Abstract:
A system for performing force sensing with an electromagnetic load may include a signal generator configured to generate a signal for driving an electromagnetic load and a processing subsystem configured to monitor at least one operating parameter of the electromagnetic load and determine a force applied to the electromagnetic load based on a variation of the at least one operating parameter.
Abstract:
A force transducer, in particular a weighing cell, includes a spring body, which deforms under the action of a force or load to be measured, and a sensor that includes two separate sensor parts mounted at different locations of the spring body and that generates a sensor signal which is dependent on the relative position of the sensor parts with respect to each other. In order to improve the adaptation of the sensor to the spring body, one of the sensor parts is attached to the spring body with interposition of an electromechanical actuator and a control device is present, which controls the actuator dependent on the sensor signal in the direction of a reduction in the positional difference of the sensor parts.
Abstract:
An electrostatic force generator is disclosed. The electrostatic force generator includes an RF AC voltage source, a capacitive module, a resonant capacitive-inductive bridge (CIB) module, a lock-in amplifier module, and a proportional-integral-derivative (PID) controller. The resonant capacitive-inductive bridge module converts the differential capacitance to a differential signal. The differential signal from the resonant capacitive-inductive bridge module is demodulated at the RF excitation frequency by the lock-in amplifier module. The PID controller receives the output signal from the lock-in amplifier module and generates two audio frequency AC signals to generate a compensation electrostatic force and maintain the capacitance balance inside the capacitive module.
Abstract:
A sensor for measuring an input signal is provided. The sensor includes a transducer having a soft magnetic material. The transducer may be disposed on a spring element. The soft magnetic material produces a change in impedance when the transducer is stimulated by the input signal. The impedance change is representative of a magnitude of the input signal. The sensor further includes a circuit coupled to the transducer, which is operable to measure the impedance change to determine the magnitude of the input signal. A method of operating the sensor is also provided.
Abstract:
A force balancing method and apparatus detects small changes in force or pressure. An LC tuned circuit having a capacitor with at least one movable plate senses force or pressure changes. Deviations in the phase of the response of the tuned circuit are compared to the phase of a driving reference oscillator to generate an error signal. The error signal is used to control the oscillator to increase or decrease its output amplitude for driving the tuned circuit. As a result the electrostatic force across the capacitor plates tends to change in such a way as to precisely balance the effect of external force or pressure changes. The system therefore operates in a force-balance mode and in such a way as to provide a high sensitivity together with a precisely controlled stiffness. This system is particularly applicable to high sensitivity microphones, micro-topography, and atomic force microscopy.
Abstract:
An electromagnetic force-transducer comprising a magnetic circuit and an electromagnetic coil kept movable in the static field provided by said magnetic circuit. The electromagnetic coil consists of two coaxial parallel windings wound on a common frame with a distance kept between the both. The magnetic circuit comprises an inner magnetic path and an outer magnetic path with a cylindrical clearance left therebetween. In the upper and the lower part of the clearance there are provided with an upper magnetic gap and a lower magnetic gap, respectively. The magnetic field in the upper gap and that in the lower gap are directed oppositely to each other. The coil frame is kept movable vertically in the cylindrical clearance, positioning one of the two windings in the upper magnetic gap and the other in the lower magnetic gap. The two windings are current-supplied in the directions opposite to each other to produce their respective electromagnetic forces in the same direction. Thus, the magnetic fields produced by the two windings are cancelled by each other, so that the resultant magnetic field by the entire electromagnetic coil does not affect the fields provided at the magnetic gaps by the magnetic circuit.
Abstract:
In order to reduce bias errors resulting from mounting of a force restoring coil assembly element of a force balancing transducer, the force coil assembly is suspended by means of one or more hinges from a force sensing movable member, which includes position pick-off means, that in turn is connected by hinging means to a support member. The effects of strain may further be reduced by locating the first hinges essentially along the axis of the centroid of the pick-off means.
Abstract:
A beamless dynamometer or weighing device comprising a coil movable in theorking gap of a fixed magnet, the coil and magnet forming part of an electromagnetic compensation circuit for the dynamometer or device, and an arrangement for guiding movement of the coil within the working gap comprising an air bearing formed of a fixed guiding cylinder and an air-mounted slidable sleeve connected to the coil; preferably two coils are provided, each connected to a separate slidable sleeve, one sleeve being disposed inside the cylinder and the other sleeve outside the cylinder with the cylinder being formed of an annular jacket suppliable with compressed air which, in use, vents into the gap between the sleeves and cylinder, one sleeve being arranged to be acted upon by the force or mass to be measured and the other sleeve carrying a reference mass.