Abstract:
A weight sensor may include a weighing platform and a load cell coupled to the platform to sense a weight applied to the platform. The load cell may include a deformable plate with one or more strain gauges arranged to provide an electrical signal representing the weight applied to the platform, and a base supporting the load cell, wherein the deformable plate is movably mounted to the base at only three contact points, the contact points allowing lateral movement of the plate relative to the base when the plate deforms in response to a weight applied to the platform. The weight sensor makes it possible to independently monitor the weight and weight shifting of two people sharing the same bed. The weight sensor is self-centering when a load is applied off-center to the platform, which is particularly beneficial when such a weight sensor is used underneath a bed, e.g., under a bed leg or other support member which may not be aligned centrally over the weight sensor. Beneficially the sensor is not unduly affected by minor misalignment of the leg of a bed relative to the load cell.
Abstract:
Provided is a pressure sensing element configured to be flexible, and capable of demonstrating a stable electrical reliability over a long period; and, a pressure sensor having such pressure sensing element. A pressure sensing element (100) has an electro-conductive pressure sensing film (14), a sensor electrode (12) provided at a position faced to the pressure sensing film (14), and an insulating layer (13) which creates a predetermined distance “A” between the pressure sensing film (14) and the sensor electrode (12) so as to keep them apart from each other, the pressure sensing film (14) being a resin film containing carbon particles (140); and, a pressure sensor (200) has the pressure sensing element (100), and a detection unit (210) which is electrically connected with the pressure sensing element (100) so as to detect contact resistance between the pressure sensing film (14) and the sensor electrode (12).
Abstract:
A load sensor is provided with a seat mounting hole between both end parts of a rectangular plate-like main body portion of a load receiving member. A plurality of strain detecting elements the resistance value of each of which changes depending on the amount of strain of the main body portion are disposed around the seat mounting hole. In plan view of the load receiving member, the center point of the seat mounting hole is offset from the center point of the arrangement of the plurality of strain detecting elements toward a part of the load receiving member that has relatively high rigidity.
Abstract:
A force sensor includes: a base; a first movable portion arranged to face the base; a second movable portion arranged to face the first movable portion; a support that is provided on the base and rockably supports the first movable portion and the second movable portion; a joint that is provided to the support and rotatably supports the second movable portion; and a first detection unit that can detect a force component causing the first movable portion and the second movable portion to rock and a second detection unit that can detect a force component causing the second movable portion to rotate, when external force is applied to at least one of the first movable portion and the second movable portion.
Abstract:
The stress sensor includes: a magnetic material; a stress applied portion on the magnetic material; a magnet disposed so as to be adjacent to by a magnetic material; a magnetic sensor disposed via the magnetic material so as to be opposed to the stress applied portion, wherein the magnetic sensor detects a magnetic flux emitted from a magnetic domain generated in the magnetic material by a local stress applied to the stress applied portion. The local stress or stress distribution can be detected with a convenience structure, and can obtain a high spatial resolution by using a stress response phenomenon of a single magnetic domain.
Abstract:
A load transducer is disclosed herein. The load transducer includes a plurality of beam portions connected to one another in succession, the plurality of beam portions being arranged in a circumscribing pattern whereby a central one of the plurality of beam portions is at least partially circumscribed by one or more outer ones of the plurality of beam portions; and at least one load cell disposed on one of the plurality of beam portions, the at least one load cell configured to measure at least one force or moment component of a load applied to the load transducer. A force measurement assembly including a plurality of load transducers with beam portions arranged in a circumscribing pattern is also disclosed herein.
Abstract:
The strain gauge holder 1 includes a holder body 10 on a side surface of a pipe 3, a gauge pressing member 21 for pressing a strain gauge 2 against the side surface of the pipe, and a feed mechanism for giving a pressing force to the gauge pressing member. The guide grooves 12 guide the gauge pressing members. The feed mechanism feeds the gauge pressing member in the guide groove to press the strain gauge 2 against the side surface of the pipe 3. The feed mechanism includes cylindrical portion 32a, bushing 32, and feed screw 31. Each of the feed screws 31 threadedly inserted into the bushing mounted on the holder body is threadedly inserted to feed the gauge pressing member.
Abstract:
A hanging scale for measuring the weight of a hanging load comprises a first attachment section comprising a first bearing and a second attachment section comprising a second bearing, the first bearing and the second bearing being aligned along a vertical axis during operation of the hanging scale; at least one longitudinal deflection measurement section which has a first end and a second end, the deflection measurement section being located between the first bearing and the second bearing and being oriented transversely with respect to said vertical axis; a first connecting section which at least partially extends laterally from the first attachment section with respect to said vertical axis, the first connecting section connecting the first bearing to the first end of the deflection measurement section; and a second connecting section which at least partially extends laterally from the second attachment section with respect to said vertical axis, the second connecting section connecting the second bearing to the second end of the deflection measurement section.
Abstract:
Provided is a pressure sensor including an elastic thin film including a first surface and a second surface that face each other, the elastic thin film including an elastomer material, a plurality of protruding deformable structures patterned on the first surface; a piezoresistive electrode formed along surfaces of the plurality of protruding deformable structures; and a counter electrode disposed to face the piezoresistive electrode.
Abstract:
A small-sized load sensor unit including a pressure member, to which a pressing force is applied, a strain body which is fixed to the pressure member by a first fixing member, a strain measuring unit which is provided on the strain body and is configured to be deformed together with the strain body, a first restricting unit which restricts a pressing force applied to a substantially center portion of the pressure member such that the pressing force becomes a predetermined threshold value or less, and a second restricting unit which restricts the pressure member from moving by a predetermined amount or more when a pressing force of an excessive load is applied to an edge portion of the pressure member.