Abstract:
Provided is a method capable of reducing the amount of a coating part remaining between a conductor and a bonding object. A chip comes closer to an anvil so that the flat cable and the terminal are sandwiched between the chip and the anvil. The flat cable and the terminal are pressed so as to come close to each other. When the chip ultrasonically vibrates, vibrations of the chip propagate to the terminal, causing the terminal to ultrasonically vibrate. Then heat is generated in a plate part by friction between the chip and the plate part. The coating part being positioned between the conductor and the plate part melts from the generated heat and is removed. Thereby the conductor and the plate part come into contact with each other resulting in a solid-phase bonding together.
Abstract:
A flat cable includes a base material including a signal conductor extending in a first direction, a first ground conductor, and a second ground conductor. The second ground conductor includes elongated conductors extending in the first direction, and bridge conductors that connect the elongated conductors at predetermined spacings along the first direction. The second ground conductor is connected with via-hole conductors at predetermined positions in two mutually opposite directions along the first direction with respect to each of the bridge conductors. Countercurrents generated from a plurality of countercurrent generation points do not flow to the first ground conductor via a common via-hole but flow to the first ground conductor individually via separate via-hole conductors.
Abstract:
A manufacturing method uses a solid coating die for applying an insulation varnish around a flat wire conductor. The die includes a die body and a die hole formed through the die body, into which the conductor is inserted. The die hole includes an entry portion having a cross section monotonically decreasing along a conductor insertion direction, and a coating portion including at least a sub-portion having a constant cross section. The cross section of the coating portion is a rectangle having four straight sides and four rounded corners. Each inner surface of each straight side has an inwardly projecting protrusion, a top contour of each protrusion being a circular arc, an elongated circular arc, an elliptical arc or a combination of these arcs, the maximum curvature of the top contour of each protrusion being larger than the maximum curvature of inner surface of the rounded corners.
Abstract:
An aircraft conductor sandwich assembly configured to be embedded in a composite aircraft structure. The conductor sandwich assembly comprises a plurality of carbon conductors disposed between two sheets of insulating layers and an adhesive resin bonding the plurality of carbon conductors and the two sheets of insulating layers into a carbon sandwich assembly such that (i) the conductors are electrically isolated and (ii) structural loads can be passed through said conductor sandwich assembly.
Abstract:
The present invention relates to a high speed transmission cable (100A) that includes a first conductor set (110), a dielectric film (120A) at least partially concentrically disposed around the first conductor set (110) and a pinched portion (150A) forming an insulating envelope (140A) around the first conductor set (110). The dielectric film (120A) includes a base layer (122) having a plurality of first protrusions (124) formed on a first major surface of the base layer (122), wherein the dielectric film (120A) is disposed such that the base layer (122) is partially concentric with the conductor set (110) and wherein a portion of the first protrusions (124) is disposed between the first conductor set (110) and the base layer (122) in a region where the base layer (122) is concentric with the first conductor set (110).
Abstract:
There is provided a flat cable allowing a connector to be easily attached to terminals and a wiring harness provided with the flat cable. The wiring harness is provided with a connector and a flat cable. The connector is provided with a connector housing and a female terminal. The flat cable has: a plurality of electrical wires; and an elongated weft. Female terminals are attached to ends of the wires. The weft has: crossing sections that are perpendicular to the plurality of electrical wires and that are disposed at the plurality of electrical wires rising and falling by a certain rule; and parallel sections that are continuous with the crossing sections and that overlap the electrical wires positioned at the ends among the plurality of electrical wires. Adjacent electrical wires are disposed with a gap therebetween, and adjacent crossing sections of the weft are disposed with a gap therebetween.
Abstract:
A power cable (10) has a metal conductor encased in a first outer sheath (11), and further encased, partially along the length of the cable, in a second outer sheath (12, 13, 14) which influences the pattern of deformation of the cable under mechanical stress.
Abstract:
Electric submersible well pumping systems operable in well temperatures of above about 180° C. (356° F.) utilize high temperature electrical insulation. The electrical insulation includes E-base polyimide films or perfluoropolymer TE films on various components. The insulation films are employed around magnet wires that are threaded through slots in the stator. Slot insulation of E-base polyimide or perfluoropolymer TE film surrounds the magnet wires in the stator slots. Sheets of E-base polyimide or perfluoropolymer TE film extend around and between phase loops of the magnet wire at the lower end of the stator. The motor contains a PAO oil having additives to dissipate acid generated by epoxy used in the motor.
Abstract:
A cable assembly is provided including an encapsulated cable having one or more elements and an intermediary section. The encapsulated cable extends along a length direction. The intermediary section extends along the length direction and is attached along a length of the encapsulated cable and extends outwardly therefrom. The intermediary section is configured to receive one or more fasteners for securing the cable assembly to an external surface without the one or more fasteners contacting the one or more elements.
Abstract:
A flat high definition multimedia interface (HDMI) cable. The flat cable that is less visible in comparison to a round HDMI cable for wall mounted television setup. An HDMI connector is coupled to the flat cable. An active circuit isolates physical characteristics of the HDMI connector. The active circuit causes the flat cable to appear shorter than its actual length during HDMI compliance testing using impedance testing. Moreover, the active circuit causes a consumer electronic control (CEC) line, a display data channel (DDC) line and transition minimized differential signal (TMDS) line to actively terminate for reducing parasitic capacitance from the length of the flat cable during HDMI compliance testing. Thus, the isolation allows the flat cable to satisfy HDMI compliant testing. The flat cable may be selected from a group consisting of ribbon cable, twisted pair cable, flexible printed circuit board, micro coax cable, optical cable and glass fiber cable.