摘要:
A photovoltaic cell includes a photoelectric conversion element (PCE) in which an i-type silicon layer formed of a microcrystalline silicon film is provided between an n-type silicon layer and a p-type silicon layer, and the n-type silicon layer or p-type silicon layer positioned on a substrate side is configured of an amorphous silicon film. The PCE is formed wherein a mixture of a silane containing gas and hydrogen gas is introduced into a chamber and a seed layer formed of a microcrystalline silicon film is formed between the n-type silicon layer or p-type silicon layer positioned on the substrate side and the i-type silicon layer. The crystallization rate of a portion in contact with the n-type silicon layer or p-type silicon layer positioned on the substrate side is lower than that of the i-type silicon layer, and the rate increases continuously, or gradually in two or more stages, toward the i-type silicon layer side, continuing to the i-type silicon layer.
摘要:
There is provided a semiconductor film formed on a surface of a substrate and containing a crystalline substance, wherein the semiconductor film has a central region including a center of a surface of the semiconductor film and a peripheral region located around the central region, and a crystallization ratio in the peripheral region of the semiconductor film is higher than a crystallization ratio in the central region. There is also provided a photoelectric conversion device including the semiconductor film.
摘要:
The present invention provides a method of coating a substrate with a zinc oxide film, the method comprising the steps of: Providing a substrate with at least one substantially flat surface; Subjecting said surface at least partially to a plasma-etching process; Depositing a layer on said etched surface, the layer comprising zinc oxide. The method according to the invention is particularly suitable for manufacturing solar cells with an improved efficiency.
摘要:
A method for manufacturing a micromorph tandem cell is disclosed. The micromorph tandem cell comprises a μc-Si:H bottom cell and an a-Si:H top cell, an LPCVD ZnO front contact layer and a ZnO back contact in combination with a white reflector. The method comprises the steps of applying an AR—Anti-Reflecting—concept to the micromorph tandem cell; implementing an intermediate reflector in the micromorph tandem cell. The micromorph tandem cell can achieve a stabilized efficiency of 10.6%.
摘要:
A solar cell includes a semiconductor base, a first doped semiconductor layer, an insulating layer, a second doped semiconductor layer and a first electrode layer. The semiconductor base has a first doped type. The first doped semiconductor layer, disposed on the semiconductor base, has a doped contact region. The insulating layer is disposed on the first doped semiconductor layer, exposing the doped contact region. The second doped semiconductor layer is disposed on the insulating layer and the doped contact region. The first doped semiconductor layer, the doped contact region and the second doped semiconductor layer have a second doped type, and a dopant concentration of the second doped semiconductor layer is between that of the first doped semiconductor layer and that of the doped contact region. The first electrode layer is disposed corresponding to the doped contact region.
摘要:
A photovoltaic (solar) cell comprises two photovoltaic devices that are quantum mechanically coupled via a charge-coupling layer. One of the PV devices may have an energy band gap that is larger than or equal to an energy band gap of the other of the PV devices. The effective electron barrier heights or electron affinity on side portions of the quantum coupling layer are higher than the maximum energy of photo-generated electrons in the photovoltaic devices. The photovoltaic device with larger band gap may include an electron and/or hole transport layer and photon absorbing layer. Photons are transmitted through the transport layer to the absorbing layer. Some high energy photons are absorbed by the absorbing layer. The absorbing layer may function as an absorber of high energy photons and generator of electrons/holes (or excitons). Holes generated in the absorbing layer may be quenched by electrons from the second photovoltaic device.
摘要:
The absorption coefficient of silicon for infrared light is very low and most solar cells absorb very little of the infrared light energy in sunlight. Very thick cells of crystalline silicon can be used to increase the absorption of infrared light energy but the cost of thick crystalline cells is prohibitive. The present invention relates to the use of less expensive microcrystalline silicon solar cells and the use of backside texturing with diffusive scattering to give a very large increase in the absorption of infrared light. Backside texturing with diffusive scattering and with a smooth front surface of the solar cell results in multiple internal reflections, light trapping, and a large enhancement of the absorption of infrared solar energy.
摘要:
The invention relates to a method for production of a thin-layer solar cell with microcrystalline silicon and a layer sequence. According to the invention, a microcrystalline silicon layer is applied to the lower p- or n-layer in pin or nip thin-layer solar cells, by means of a HWCVD method before the application of the microcrystalline i-layer. The efficiency of the solar cell is hence increased by up to 0.8% absolute.
摘要:
It is an object to reduce the region of a photoelectric conversion element which light does not reach, to suppress deterioration of power generation efficiency, and to suppress manufacturing cost of a voltage conversion element. The present invention relates to a transmissive photoelectric conversion device which includes a photoelectric conversion element including an n-type semiconductor layer, an intrinsic semiconductor layer, and a p-type semiconductor layer; a voltage conversion element which is overlapped with the photoelectric conversion element and which includes an oxide semiconductor film for a channel formation region; and a conductive element which electrically connects the photoelectric conversion element and the voltage conversion element. The photoelectric conversion element is a solar cell. The voltage conversion element includes a transistor having a channel formation region including an oxide semiconductor film. The voltage conversion element is a DC-DC converter.
摘要:
Disclosed is a photovoltaic device that comprises: a first electrode including a transparent conductive oxide layer; a first unit cell being placed on the first electrode; a second unit cell being placed on the first unit cell; and a second electrode being placed on the second unit cell, wherein the intrinsic semiconductor layer of the first unit cell includes hydrogenated amorphous silicon or hydrogenated amorphous silicon based material, wherein an intrinsic semiconductor layer of the second unit cell includes hydrogenated microcrystalline silicon or hydrogenated microcrystalline silicon based material, and wherein a ratio of a root mean square roughness to an average pitch of a texturing structure formed on the surface of the first electrode is equal to or more than 0.05 and equal to or less than 0.13.