Abstract:
A power amplifier negates a memory effect and is applied a linearizer using a digital predistortion system even in an inexpensive device. The power amplifier compares an input signal power against a sampled component of an output power, and provides predistortion to the input signal power so as to minimize a difference as a result of the comparison. The power amplifier comprises a gain lookup table storing a gain coefficient value corresponding to a temperature address determined for an input power; a phase lookup table storing a phase coefficient value corresponding to the temperature address determined for the input power; a transversal filter, which is input with the input power, and which outputs the temperature address; and a coefficient multiplier modulating the input signal using a gain coefficient value and a phase coefficient value, which correspond to the temperature address and which are read out from the gain coefficient lookup table and the phase lookup table.
Abstract:
A power amplifier pre-distorter is formed by a FIR filter structure which includes an individual look-up table for each filter tap, where each look-up table represents a sampled polynomial in a variable representing signal amplitude, and means for selecting, from each filter tap look-up table, a filter coefficient that depends on the amplitude of a corresponding complex signal value to be multiplied by the filter tap. A training method for such a pre-distorter determines (S1) a first estimate of a first look-up table assigned to a first filter tap, assuming a second look-up table assigned to a second filter tap is set to predetermined table values. Thereafter the method determines (S2) a second estimate of the second look-up table, assuming the first look-up table is set to the determined first estimate. If deemed necessary, the method includes the further steps (a) refining (S3) the first estimate refined, assuming the second look-up table is set to the latest determined second estimate, and (b) refining (S4) the second estimate, assuming the first look-up table is set to the latest determined first estimate. Steps (a) and (b) may be repeated (S5) until convergence is reached.
Abstract:
A system for digitally linearizing the nonlinear behaviour of RF high efficiency amplifiers employing baseband predistortion techniques is disclosed. The system provides additive or multiplicative predistortion of the digital quadrature (I/Q) input signal in order to minimize distortion at the output of the amplifier. The predistorter uses a discrete-time polynomial kernel to model the inverse transfer characteristic of the amplifier, providing separate and simultaneous compensation for nonlinear static distortion, linear dynamic distortion and nonlinear dynamic effects including reactive electrical memory effects. Compensation for higher order reactive and thermal memory effects is embedded in the nonlinear dynamic compensation operation of the predistorter in an IIR filter bank. A predistortion controller periodically monitors the output of the amplifier and compares it to the quadrature input signal to compute estimates of the residual output distortion of the amplifier. Output distortion estimates are used to adaptively compute the values of the parameters of the predistorter in response to changes in the amplifier's operating conditions (temperature drifts, changes in modulation input bandwidth, variations in drive level, aging, etc). The predistortion parameter values computed by the predistortion controller are stored in non-volatile memory and used in the polynomial digital predistorter. The digital predistortion system of the invention may provide broadband linearization of highly nonlinear and highly efficient RF amplification circuits including, but not limited to, dynamic load modulation amplifiers.
Abstract:
A gain adjuster and a phase adjuster of a distortion generation path are set so that an extracted distortion component becomes small, the extracted component is compared with a reference value. When an upper-frequency distortion component of a pilot signal is larger than the reference value, the gain and phase of a frequency characteristic compensator of the distortion generation path are controlled so that the upper-frequency distortion component of the pilot signal becomes smaller than a value preset in the controller. When a lower-frequency distortion component of the pilot signal is larger than a reference value, the gain and phase of the frequency characteristic compensator of the distortion generation path are controlled so that the lower-frequency distortion component of the pilot signal becomes smaller than a value preset in the controller.
Abstract:
An RF power amplifier having reduced memory effects is disclosed. This is achieved by a novel design of the DC supply feed network to achieve low impedance across video frequencies, whilst maintaining the correct RF output matching. One or more transmission zeros are provided in the bias circuit transfer function, which are positioned in the video bandwidth so as to provide low and relatively constant impedance across the video bandwidth. Also, a parallel DC feed line may be employed to reduce impedance across the video bandwidth. The reduction in memory effects allows improved performance of predistortion linearization techniques and an implementation in a feed forward amplifier employing predistortion linearization is also disclosed.
Abstract:
A wideband predistortion system compensates for a nonlinear amplifier's frequency and time dependent AM-AM and AM-PM distortion characteristics. The system comprises a data structure in which each element stores a set of compensation parameters (preferably including FIR filter coefficients) for predistorting the wideband input transmission signal. The parameter sets are preferably indexed within the data structure according to multiple signal characteristics, such as instantaneous amplitude and integrated signal envelope, each of which corresponds to a respective dimension of the data structure. To predistort the input transmission signal, an addressing circuit digitally generates a set of data structure indices from the input transmission signal, and the indexed set of compensation parameters is loaded into a compensation circuit which digitally predistorts the input transmission signal. This process of loading new compensation parameters into the compensation circuit is preferably repeated every sample instant, so that the predistortion function varies from sample-to-sample. The sets of compensation parameters are generated periodically and written to the data structure by an adaptive processing component that performs a non-real-time analysis of amplifier input and output signals. The adaptive processing component also implements various system identification processes for measuring the characteristics of the power amplifier and generating initial sets of filter coefficients. In an antenna array embodiment, a single adaptive processing component generates the compensation parameters sets for each of multiple amplification chains on a time-shared basis. In an embodiment in which the amplification chain includes multiple nonlinear amplifiers that can be individually controlled (e.g., turned ON and OFF) to conserve power, the data structure separately stores compensation parameter sets for each operating state of the amplification chain.
Abstract:
Envelope tracking power supply circuitry includes a look up table (LUT) configured to provide a target supply voltage based on a power envelope measurement. The target supply voltage is dynamically adjusted based on a delay between the power envelope of an RF signal and a provided envelope tracking supply voltage. The envelope tracking supply voltage is generated from the adjusted target supply voltage in order to synchronize the envelope tracking supply voltage with the power envelope of the RF signal.
Abstract:
A RF-digital hybrid mode power amplifier system for achieving high efficiency and high linearity in wideband communication systems is disclosed. The present invention is based on the method of adaptive digital predistortion to linearize a power amplifier in the RF domain. The present disclosure enables a power amplifier system to be field reconfigurable and support multi-modulation schemes (modulation agnostic), multi-carriers and multi-channels. As a result, the digital hybrid mode power amplifier system is particularly suitable for wireless transmission systems, such as base-stations, repeaters, and indoor signal coverage systems, where baseband I-Q signal information is not readily available.
Abstract:
In a system, known digital representations are generated, and test analog signals are generated using the known digital representations. The test analog signals are transmitted using a transmitter of a transmission system. The test analog signals are received using a receiver of the transmission system and used to generate test received digital representations. The test received digital representations are cross-correlated with the known digital representations to generate a mixing matrix. The mixing matrix is inverted to generate a de-mixing matrix, which is applied to subsequent digital data to be encoded onto a signal and transmitted by the transmitter to generate pre-compensated digital data.
Abstract:
Methods and apparatus are provided for direct synthesis of RF signals using maximum likelihood sequence estimation. An RF digital RF input signal is synthesized by performing maximum likelihood sequence estimation on the digital RF input signal to produce a digital stream, such that after filtering by a prototype filter the produced digital stream produces a substantially minimum error. The substantially minimum error comprises a difference between a digital output of the prototype filter and the digital RF input signal. The digital stream is substantially equal to the input digital RF signal. The digital stream can be applied to an analog restitution filter, and the output of the analog restitution filter comprises an analog RF signal that approximates the digital RF input signal.