-
公开(公告)号:US12063050B2
公开(公告)日:2024-08-13
申请号:US17754309
申请日:2019-12-27
Applicant: Intel Corporation
Inventor: Albert Molina , Kameran Azadet , Martin Clara , Matteo Camponeschi , Christian Lindholm
CPC classification number: H03M1/466
Abstract: An analog-to-digital converter comprising a plurality of sampling cells. At least one of the plurality of sampling cells comprises a capacitive element coupled to a cell output of the at least one of the plurality of sampling cells, wherein a cell output signal is provided at the cell output. The at least one of the plurality of sampling cells further comprises a first cell input for receiving an input signal to be digitized, and a second cell input for receiving a calibration signal. Additionally, the at least one of the plurality of sampling cells comprises a first switch circuit capable of selectively coupling the first cell input to the capacitive element based on a clock signal, and a second switch circuit capable of selectively coupling the second cell input to the capacitive element, wherein a size of the second switch circuit is smaller than a size of the first switch circuit.
-
公开(公告)号:US20240007337A1
公开(公告)日:2024-01-04
申请号:US17854155
申请日:2022-06-30
Applicant: Intel Corporation
Inventor: Sunitha Motipalli , Kameran Azadet , Albert Molina , Joseph Othmer , Kannan Rajamani
IPC: H04L27/26
CPC classification number: H04L27/2618 , H04L27/262 , H04L27/2615 , H04B1/0475
Abstract: Techniques are disclosed for the use of Crest Factor Reduction (CFR) technique that utilizes a cancellation pulse signal having a reduced length. The CFR technique may be applied to a signal to be transmitted, which may comprise a composite signal having one or more carrier signals. Each carrier signal of the composite signal may be filtered via a respective channel filter and then recombined to form the signal to be transmitted, on which the CFR operations are then applied. The length of the cancellation pulse signal is less than the number of taps of the channel filter with the largest number of taps. This reduction in cancellation pulse signal length significantly reduces the processing power required to perform the CFR operations while maintaining regulatory emissions compliance.
-
公开(公告)号:US20220384956A1
公开(公告)日:2022-12-01
申请号:US17734529
申请日:2022-05-02
Applicant: Intel Corporation
Inventor: Erkan Alpman , Arnaud Lucres Amadjikpe , Omer Asaf , Kameran Azadet , Rotem Banin , Miroslav Baryakh , Anat Bazov , Stefano Brenna , Bryan K. Casper , Anandaroop Chakrabarti , Gregory Chance , Debabani Choudhury , Emanuel Cohen , Claudio Da Silva , Sidharth Dalmia , Saeid Daneshgar Asi , Kaushik Dasgupta , Kunal Datta , Brandon Davis , Ofir Degani , Amr M. Fahim , Amit Freiman , Michael Genossar , Eran Gerson , Eyal Goldberger , Eshel Gordon , Meir Gordon , Josef Hagn , Shinwon Kang , Te Yu Kao , Noam Kogan , Mikko S. Komulainen , Igal Yehuda Kushnir , Saku Lahti , Mikko M. Lampinen , Naftali Landsberg , Wook Bong Lee , Run Levinger , Albert Molina , Resti Montoya Moreno , Tawfiq Musah , Nathan G. Narevsky , Hosein Nikopour , Oner Orhan , Georgios Palaskas , Stefano Pellerano , Ron Pongratz , Ashoke Ravi , Shmuel Ravid , Peter Andrew Sagazio , Eren Sasoglu , Lior Shakedd , Gadi Shor , Baljit Singh , Menashe Soffer , Ra'anan Sover , Shilpa Talwar , Nebil Tanzi , Moshe Teplitsky , Chintan S. Thakkar , Jayprakash Thakur , Avi Tsarfati , Yossi Tsfati , Marian Verhelst , Nir Weisman , Shuhei Yamada , Ana M. Yepes , Duncan Kitchin
IPC: H01Q9/04 , H01Q5/47 , H01Q1/24 , H01Q1/38 , H01Q1/48 , H01Q3/24 , H01Q21/24 , H03L7/14 , H04B1/3827 , H04B7/0456 , H04B7/06 , H04B15/04
Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
-
公开(公告)号:US11424539B2
公开(公告)日:2022-08-23
申请号:US16472830
申请日:2017-12-20
Applicant: Intel Corporation
Inventor: Erkan Alpman , Arnaud Lucres Amadjikpe , Omer Asaf , Kameran Azadet , Rotem Banin , Miroslav Baryakh , Anat Bazov , Stefano Brenna , Bryan K. Casper , Anandaroop Chakrabarti , Gregory Chance , Debabani Choudhury , Emanuel Cohen , Claudio Da Silva , Sidharth Dalmia , Saeid Daneshgar Asl , Kaushik Dasgupta , Kunal Datta , Brandon Davis , Ofir Degani , Amr M. Fahim , Amit Freiman , Michael Genossar , Eran Gerson , Eyal Goldberger , Eshel Gordon , Meir Gordon , Josef Hagn , Shinwon Kang , Te Yu Kao , Noam Kogan , Mikko S. Komulainen , Igal Yehuda Kushnir , Saku Lahti , Mikko M. Lampinen , Naftali Landsberg , Wook Bong Lee , Run Levinger , Albert Molina , Resti Montoya Moreno , Tawfiq Musah , Nathan G. Narevsky , Hosein Nikopour , Oner Orhan , Georgios Palaskas , Stefano Pellerano , Ron Pongratz , Ashoke Ravi , Shmuel Ravid , Peter Andrew Sagazio , Eren Sasoglu , Lior Shakedd , Gadi Shor , Baljit Singh , Menashe Soffer , Ra'anan Sover , Shilpa Talwar , Nebil Tanzi , Moshe Teplitsky , Chintan S. Thakkar , Jayprakash Thakur , Avi Tsarfati , Yossi Tsfati , Marian Verhelst , Nir Weisman , Shuhei Yamada , Ana M. Yepes , Duncan Kitchin
IPC: H01Q5/47 , H01Q9/04 , H01Q1/24 , H01Q1/38 , H01Q1/48 , H01Q3/24 , H01Q21/24 , H03L7/14 , H04B1/3827 , H04B7/0456 , H04B7/06 , H04B15/04
Abstract: Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
-
公开(公告)号:US20220197640A1
公开(公告)日:2022-06-23
申请号:US17131939
申请日:2020-12-23
Applicant: Intel Corporation
Inventor: Kameran Azadet , Joseph Williams , Zoran Zivkovic
IPC: G06F9/30 , G06F9/38 , G06F16/901
Abstract: Techniques are disclosed for a vector processor architecture that enables data interpolation in accordance with multiple dimensions, such as one-, two-, and three-dimensional linear interpolation. The vector processor architecture includes a vector processor and accompanying vector addressable memory that enable a simultaneous retrieval of multiple entries in the vector addressable memory to facilitate linear interpolation calculations. The vector processor architecture vastly increases the speed in which such calculations may occur compared to conventional processing architectures. Example implementations include the calculation of digital pre-distortion (DPD) coefficients for use with radio frequency (RF) transmitter chains to support multi-band applications.
-
公开(公告)号:US11183993B2
公开(公告)日:2021-11-23
申请号:US16724564
申请日:2019-12-23
Applicant: Intel Corporation
Inventor: Hundo Shin , Kameran Azadet , Martin Clara , Daniel Gruber
Abstract: An apparatus for generating a plurality of phase-shifted clock signals is provided. The apparatus comprises a first input node configured to receive a first reference clock signal. Further, the apparatus comprises a second input node configured to receive a second reference clock signal. The apparatus comprises a plurality of output nodes each configured to output one of the plurality of phase-shifted clock signals. Additionally, the apparatus comprises a cascade of coupled clock generation circuits configured to generate the plurality of phase-shifted clock signals based on the first reference clock signal and the second reference clock signal. Input nodes of the first clock generation circuit of the cascade of clock generation circuits are coupled to the first input node and the second input node. Output nodes of the last clock generation circuit of the cascade of clock generation circuits are coupled to the plurality of output nodes. At least one of the plurality of clock generation circuits is an active circuit, and at least one of the plurality of clock generation circuits is a passive circuit.
-
公开(公告)号:US11177820B2
公开(公告)日:2021-11-16
申请号:US16933292
申请日:2020-07-20
Applicant: Intel Corporation
Inventor: Albert Molina , Martin Clara , Matteo Camponeschi , Christian Lindholm , Kameran Azadet
Abstract: A n-bit Successive Approximation Register Analog-to-Digital Converter, SAR ADC, is provided. The SAR ADC comprises a respective plurality of sampling cells for each bit of the n-bit of the SAR ADC. Each sampling cell comprises a capacitive element coupled to a cell output of the sampling cell in order to provide a cell output signal. Further, each sampling cell comprises a first cell input for receiving a first signal, and a first switch circuit capable of selectively coupling the first cell input to the capacitive element. Each cell additionally comprises a second cell input for receiving a second signal, and a third cell input for receiving a third signal. The third signal exhibits opposite polarity compared to the second signal. Each sampling cell comprises a second switch circuit capable of selectively coupling one of the second cell input and the third cell input to the capacitive element. The SAR ADC further comprises at least one comparator circuit coupled to the sampling cells. The at least one comparator circuit is configured to output a comparison signal based on the cell output signals of the sampling cells. Additionally, the SAR ADC comprises a calibration circuit configured to supply at least one respective control signal to the respective second switch circuit of the sampling cells for controlling the second switch circuits.
-
公开(公告)号:US20210194747A1
公开(公告)日:2021-06-24
申请号:US16724458
申请日:2019-12-23
Applicant: Intel Corporation
Inventor: Kameran Azadet , Martin Clara , Daniel Gruber , Christian Lindholm , Hundo Shin
Abstract: An Analog-to-Digital Converter, ADC, system is provided. The ADC system comprises a plurality of ADC circuits and a first input for receiving a transmit signal of a transceiver. One ADC circuit of the plurality of ADC circuits is coupled to the first input and configured to provide first digital data based on the transmit signal. The ADC system further comprises a second input for receiving a receive signal of the transceiver. The other ADC circuits of the plurality of ADC circuits are coupled to the second input, wherein the other ADC circuits of the plurality of ADC circuits are time-interleaved and configured to provide second digital data based on the receive signal. Additionally, the ADC system comprises a first output configured to output digital feedback data based on the first digital data, and a second output configured to output digital receive data based on the second digital data.
-
公开(公告)号:US10742225B1
公开(公告)日:2020-08-11
申请号:US16728226
申请日:2019-12-27
Applicant: Intel Corporation
Inventor: Albert Molina , Martin Clara , Matteo Camponeschi , Christian Lindholm , Kameran Azadet
Abstract: A n-bit Successive Approximation Register Analog-to-Digital Converter, SAR ADC, is provided. The SAR ADC comprises a respective plurality of sampling cells for each bit of the n-bit of the SAR ADC. Each sampling cell comprises a capacitive element coupled to a cell output of the sampling cell in order to provide a cell output signal. Further, each sampling cell comprises a first cell input for receiving a first signal, and a first switch circuit capable of selectively coupling the first cell input to the capacitive element. Each cell additionally comprises a second cell input for receiving a second signal, and a third cell input for receiving a third signal. The third signal exhibits opposite polarity compared to the second signal. Each sampling cell comprises a second switch circuit capable of selectively coupling one of the second cell input and the third cell input to the capacitive element. The SAR ADC further comprises at least one comparator circuit coupled to the sampling cells. The at least one comparator circuit is configured to output a comparison signal based on the cell output signals of the sampling cells. Additionally, the SAR ADC comprises a calibration circuit configured to supply at least one respective control signal to the respective second switch circuit of the sampling cells for controlling the second switch circuits.
-
10.
公开(公告)号:US09813223B2
公开(公告)日:2017-11-07
申请号:US14168621
申请日:2014-01-30
Applicant: Intel Corporation
Inventor: Kameran Azadet
IPC: G06F7/60 , H04L5/14 , H04L25/08 , G06F17/50 , H04B1/62 , H04L1/00 , H04B1/04 , G06F17/15 , G06F9/30 , H04L25/03 , H04L27/36 , H04J11/00 , H04B1/525
CPC classification number: H04L5/1461 , G06F9/30036 , G06F17/15 , G06F17/50 , G06F17/5009 , H04B1/0475 , H04B1/525 , H04B1/62 , H04B2001/0425 , H04J11/004 , H04L1/0043 , H04L25/03012 , H04L25/03343 , H04L25/08 , H04L27/367 , H04L27/368
Abstract: Techniques for non-linear modeling of a physical system are provided using direct optimization of look-up table values. A non-linear system with memory is modeled by obtaining physical data for the non-linear system by applying a set of input samples x(n) to the non-linear system and measuring an output y(n) of the non-linear system; directly computing parameters Φ of a memory model for the non-linear system from the physical data, wherein the memory model comprises one or more look-up tables having linear interpolation and wherein the parameters Φ produce a substantially minimum mean square error; and providing the parameters Φ for storage as entries in the one or more look-up tables. The mean square error can be determined, for example, using one or more of a least squares algorithm, a least mean square algorithm and a recursive least squares algorithm. The look-up tables are optionally used in a processor instruction to implement digital pre-distortion.
-
-
-
-
-
-
-
-
-