Abstract:
There is provided an optical analysis technique using the optical system of a confocal or multiphoton microscope for optical analysis techniques, such as the scanning molecule counting method, FCS, FIDA and PCH, where it is enabled to judge if a predetermined condition in the optical system is realized before performing a light intensity measurement. In the inventive optical analysis technique, there is performed a process of judging if a light detection region is placed in a sample solution and a measurement of the light intensity from a light detection region can be performed, and/or, the position or its area of the light detection region relative to a sample container in which a light intensity measurement can be performed based on the magnitude of signal intensity outputted by a photodetector during moving the position of the light detection region.
Abstract:
A compensating current is applied at one or more points in a signal processing path to compensate for one or both of a dark or offset current present in an input signal. In certain implementations, the dark or offset current is present in a signal generated by a photomultiplier device. The dark or offset current may be monitored in an output of the signal processing path and, the monitoring being used to determine how much compensation is needed in the signal processing path and to allocate where in the signal processing path the compensation current will be applied.
Abstract:
A position detector includes a source of radiant energy, such as infrared light. A sensor is spaced from the source. The source and the sensor can be carried spaced apart from one another by a housing. Control circuits, carried by the housing, are coupled to the source and the sensor. Pulsed radiant energy, emitted by the source is incident on the sensor only when transmitted by a solid optical medium which has a predetermined orientation relative to the housing. When the medium has the predetermined orientation, the sensor receives transmitted radiant energy from the source. When the medium moves from the predetermined orientation, the sensor ceases to receive the transmitted radiant energy from the source, and the control circuits can generate an alarm indication.
Abstract:
A light sensing apparatus includes a light sensing module, a signal conversion module and a processing module. The light sensing module is configured to output a first and second sense signals according to a light intensity emitting thereon. The signal conversion module is electrically coupled to the light sensing module and configured to receive the first and second sense signals and output a sense value according to a relative difference between the first and second sense signals, The comparison module is electrically coupled to the signal conversion module and configured to adjust a light sensing characteristic of the light sensing module according to the sense value so as to adjust a light sensing characteristic of the light sensing module. An adjustment method for a light sensing apparatus is also provided.
Abstract:
According to one embodiment, an optical coupling device is provided.A first photodiode receives an optical signal generated by a light emitting element and converts the optical signal into a first electrical signal. A first inverting amplifier is provided with a first feedback resistor and a first operating amplifier connected in parallel with each other. The input end is connected to a cathode of the first photodiode. A first signal which is obtained by inverting the first electrical signal is output from the output end. A second inverting amplifier is provided with a second feedback resistor and a second operating amplifier connected in parallel with each other. The input end of the second inverting amplifier is connected to a cathode of a second photodiode. The second inverting amplifier outputs a second signal from the output end. A comparator receives the first and second signals and outputs a comparison amplified signal.
Abstract:
Photodetectors operable to achieve multiplication of photogenerated carriers at ultralow voltages. Embodiments include a first p-i-n semiconductor junction combined with a second p-i-n semiconductor junction to form a monolithic photodetector having at least three terminals. The two p-i-n structures may share either the p-type region or the n-type region as a first terminal. Regions of the two p-i-n structures doped complementary to that of the shared terminal form second and third terminals so that the first and second p-i-n structures are operable in parallel. A multiplication region of the first p-i-n structure is to multiply charge carriers photogenerated within an absorption region of the second p-i-n structure with voltage drops between the shared first terminal and each of the second and third terminals being noncumulative.
Abstract:
A method for determining an ambient light type is described. The method includes receiving measurement information from multiple photodetectors configured for different light spectra, calculating a color ratio using the measurement information, obtaining a correction value using the color ratio, applying the correction value to at least one of the first and second measurement information to obtain a photopic illuminance value, and determining an ambient light type using the photopic illumination value and the color ratio.
Abstract:
An apparatus includes an array containing N sub-diffraction limit light sensors each having an associated light absorption activation threshold for switching from a reset state to an activated state, where the light absorption activation values lie within a range of values. The apparatus further includes a processor connected with a memory including computer program code, where the memory and computer program code are configured to, with the processor, cause the apparatus at least to perform estimating an intensity of light that illuminates the array based on electrical outputs of the array.
Abstract:
A medical pump including an electromagnetic emitter and detector is provided. The emitter emits electromagnetic radiation of a predetermined wavelength. A pump set that is compatible with the medical pump modifies the emitted electromagnetic radiation when properly installed in the pump. The detector receives electromagnetic radiation, and a filter excludes electromagnetic radiation having a wavelength other than the predetermined wavelength. The pump monitors the filtered signal to determine whether the received electromagnetic radiation corresponds to the emitted electromagnetic radiation as modified by a properly loaded, compatible pump set and determines whether a compatible pump set is properly loaded in the pump as a function thereof.
Abstract:
An indicator for displaying either low liquid level or satisfactory liquid level conditions within a tank includes a sensor for detecting the liquid level conditions, a photodetector for detecting an ambient dark condition, a pair of indicator lights for indicating either the low liquid level or satisfactory liquid level conditions, and electrical circuitry operable to illuminate one of the indicator lights upon detection of the ambient dark condition by the photodetector and detection of either the low liquid level condition or satisfactory liquid level condition by the sensor.