Abstract:
A charged particle beam source, such as for use in an electron microscope, can include an electrically conductive support member coupled to a base, a mounting member coupled to the support member and defining a bore, and an emitter member received in the bore and retained by a fixative material layer flowed around the emitter member in the bore.
Abstract:
An electron beam source is provided that includes a vessel forming a chamber, a cathode disposed within the chamber, the cathode comprising a low dimensional electrically conductive material having an anisotropic restricted thermal conductivity, an electrode disposed in the chamber, the electrode being connectable to a power source for applying a positive voltage to the electrode relative to the cathode for accelerating free electrons away from the cathode to form an electron beam when the cathode is illuminated by electromagnetic (EM) radiation such that the cathode thermionically emits free electrons, and an electron emission window in the chamber for passing a generated electron beam out of the chamber. An electron microscope that incorporates the electron beam source is also provided.
Abstract:
An electron spectroscopy system and method are disclosed. In another aspect, an ultrabright and ultrafast angle-resolved electron spectroscopy system is provided. A further aspect of the present system employs an electron gun, a radio frequency cavity and multiple spectrometers. Yet another aspect uses spectrometers in an aligned manner to deflect and focus electrons emitted by the electron gun. Moreover, an ultrafast laser is coupled to an electron spectroscopy system. A bunch of monochromatic electrons have their energy compressed and reoriented in an additional aspect of the present system. A further aspect of the present electron spectroscopy system employs adaptive and/or adjustable optics to optimize both time and energy compression. Another aspect provides at least two RF lenses or cavities, one before a specimen and one after the specimen.
Abstract:
A magnetic gun lens and an electrostatic gun lens can be used in an electron beam apparatus and can help provide high resolutions for all usable electron beam currents in scanning electron microscope, review, and/or inspection uses. An extracted beam can be directed at a wafer through a beam limiting aperture using the magnetic gun lens. The electron beam also can pass through an electrostatic gun lens after the electron beam passes through the beam limiting aperture.
Abstract:
An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system (“laser”). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.
Abstract:
An electron microscope is disclosed which has a laser-driven photocathode and an arbitrary waveform generator (AWG) laser system (“laser”). The laser produces a train of temporally-shaped laser pulses of a predefined pulse duration and waveform, and directs the laser pulses to the laser-driven photocathode to produce a train of electron pulses. An image sensor is used along with a deflector subsystem. The deflector subsystem is arranged downstream of the target but upstream of the image sensor, and has two pairs of plates arranged perpendicular to one another. A control system controls the laser and a plurality of switching components synchronized with the laser, to independently control excitation of each one of the deflector plates. This allows each electron pulse to be directed to a different portion of the image sensor, as well as to be provided with an independently set duration and independently set inter-pulse spacings.
Abstract:
The invention relates to a cathode arrangement comprising: a thermionic cathode comprising an emission portion provided with an emission surface for emitting electrons, and a reservoir for holding a material, wherein the material, when heated, releases work function lowering particles that diffuse towards the emission portion and emanate at the emission surface at a first evaporation rate; a focusing electrode comprising a focusing surface for focusing the electrons emitted from the emission surface of the cathode; and an adjustable heat source configured for keeping the focusing surface at a temperature at which accumulation of work function lowering particles on the focusing surface is prevented.
Abstract:
A master radio-frequency signal output from a master oscillator is input to a frequency converter. The frequency converter generates and outputs a multiplied signal having a frequency higher than that of the master radio-frequency signal by using the master radio-frequency signal. A loss of light reciprocating in an optic resonator of a laser oscillator is controlled by both the master radio-frequency signal output from the master oscillator and the multiplied signal output from the frequency converter. It is possible to highly precisely synchronize a pulse laser beam and a radio-frequency signal.
Abstract:
An electron gun with one directly heatable initial cathode (2), one indirectly heatable second blocking cathode (3) and one focusing electrode (17). The focusing electrode (17) presents an initial centering region (18) and, by means of supporting braces, the blocking cathode (3) is fixed concentrically in a carrier ring (19) presenting a second centering region complementary to the first centering region (18). This permits the blocking cathode (3) to be introduced into the focusing electrode from the back by means of the carrier ring (19), and the carrier ring (19) is secured by means of a locking ring (24).
Abstract:
Apparatus is disclosed for generating high density pulses of electrons thermionically. The apparatus includes a metallic target maintained within a low pressure cesium vapor atmosphere. A laser rapidly heats the cesiated target surface to a high temperature in a time short compared with the residence time of cesium atoms adsorbed on the target surface. This rapid surface heating in combination with the adsorbed cesium atoms emits copious quantities of electrons forming a high current density pulse.