摘要:
A disk-shaped cathode pellet is installed and secured by a retainer onto a heater cap that incorporates a heater. The part of this retainer that covers the periphery of the electron emission surface of the cathode pellet functions as a portion of a Wehnelt electrode. Alternatively, the retainer is formed such that the average angle of the surface with respect to the outermost shell of the electron beam matches the Pierce angle such that the part of this retainer that covers the periphery of the electron emission surface of the cathode pellet functions as a Wehnelt electrode.
摘要:
This invention relates to electron guns, each comprising of an indirectly heated cathode, a gate electrode and an anode, for generating electron beams of various shapes and power that are preferably used to machine workpieces. Thus cathodes can be used with various geometric designs. Thus cathodes of the most varied geometrical shapes can be used. Along with band cathodes and band cathodes with bodies attached to them, massive cathodes such as bolt-type cathodes can also be applied. Using massive bodies results in a longer service life of the cathode as compared to band cathodes. Another benefit is that the service life of the heat source for the cathode is identical to the service life of the laser used. It is particularly advantageous to place the laser outside the housing, which ensures a very long service life of this source of heat. At the same time, the solution according to the invention is distinguished by an indirect temperature measurement of the cathode. This allows the radiation property to be controlled and improved. There is thus a type of compensation for the effects of the craters that may occur on the emission surface of the cathode.
摘要:
The present invention relates to an electron gun cathode mount adapted at one end to secure a thermionic cathode and at the other end to be connected to an attachment member, wherein the electron gun cathode mount is structured so as to be capable of, when in use, reducing heat transfer from the thermionic cathode to the attachment member, and the material forming the electron gun cathode mount has a thermal conductivity of less than 10 Wm−1K−1 at the operating temperature of the thermionic cathode in a direction from the thermionic cathode to the attachment member. The present invention also relates to an electron gun assembly having the electron gun cathode mount installed therein.
摘要:
An inspection apparatus includes: beam generation means for generating any of charged particles and electromagnetic waves as a beam; a primary optical system that guides the beam into an inspection object held in a working chamber and irradiates the inspection object with the beam; a secondary optical system that detects secondary charged particles occurring from the inspection object; and an image processing system that forms an image on the basis of the detected secondary charged particles. The primary optical system includes a photoelectron generator having a photoelectronic surface. The base material of the photoelectronic surface is made of material having a higher thermal conductivity than the thermal conductivity of quartz.
摘要:
The present invention relates to an apparatus for generating an electron beam, comprising: a cathode; a housing which has an opening formed at one side thereof such that the cathode is coupled to the opening, and which has a resonant cavity formed therein; and a gasket interposed between the cathode and the housing such that the gasket is compressed in accordance with the coupling strength between the cathode and the housing so as to shut off the resonant cavity from the outside.
摘要:
An electron gun includes a plate-like main cathode 77 having an electron emitting surface 79 and a sub-cathode 81 provided toward the rear surface of the main cathode to heat the main cathode 77 by imparting an electron bombardment. The sub-cathode 81 is constituted of filaments 83 and 85 coiled in a double helix structure and the diameter of the sub-cathode 81 is larger than the diameter of the main cathode 77. As a result, the temperature at the peripheral area of the electron emitting surface 79 can be set higher than the temperature at the center, to achieve an electron beam with a uniform intensity distribution.
摘要:
An electron source is disclosed in which control signals having transition times less than about 10 nanoseconds and electrically isolated from a gated photocathode control an electron beam supplied by the gated photocathode. In one embodiment, the electron source includes a transmissive substrate, a photoemitter on the substrate, a gate insulator on the photoemitter, a gate electrode on the gate insulator, a housing enclosing the photoemitter and the gate electrode, a light source located outside the housing, and a detector located in the housing to receive light from the light source. The detector is electrically coupled to control a voltage applied to one of the gate electrode or the photoemitter.