Abstract:
An anion generating and electron capture dissociation apparatus using cold electrons, which comprises a cold electron generation module configured to generate a large quantity of cold electrons from ultraviolet photons radiated into a mass spectrometer vacuum chamber which is in a high vacuum state has a plurality of ultraviolet diodes configured to emit the ultraviolet photons in the mass spectrometer vacuum chamber. Micro-channel plate (MCP) electron multiplier plates induce and amplify initial electron emissions of the ultraviolet photons from the ultraviolet diodes, and generate a large quantity of electron beams from a rear plate. An electron focusing lens is configured to focus the electron beams amplified through the MCP electron multiplier plates. A grid is configured to adjust energy and an electric current of the electron beams together with the electron focusing lens.
Abstract:
An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.
Abstract:
An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.
Abstract:
Beam generating system for electron beam measuring instruments. In prior art beam generators, the life expectancy of directly heated boride cathodes is limited by their thermally disadvantageous mount. The present invention provides a cathode not clamped at the lower end of the crystal shank as was previously standard, but clamped immediately below the cathode tip. The inventive mount of the boride cathode results in the crystal being only insignificantly hotter in the region of the clamping plane than at the electron-emitting tip.
Abstract:
An electron spectroscopy system is disclosed which is specially suited for chemical analysis of electrically isolated specimens. X-rays or other ionizing radiation is focused to a relatively small spot on the surface of the electrically isolated sample to be analyzed. An electron energy analyzer has its input optics focused such that the input field of view of the electron energy analyzer is coincident with the beam spot produced by the focused beam of ionizing radiation on the specimen so as to capture secondary photoelectrons emitted from the surface of the sample under analysis. The energies of the secondary photoelectrons are analyzed to obtain a spectrum of the constituents of the surface of the sample under analysis. A flood beam of relatively low energy electrons is directed onto the surface of the sample for neutralizing the positive surface charge in the region of the beam spot. An electrically conductive grid is positioned in closely spaced relationship to the surface of the sample for smoothing the gradients in the electrical potential in the region of the beam spot, thereby improving the resolution of the secondary photoelectron energy spectrum obtained from the sample under analysis.
Abstract:
Certain configurations of an ionization source comprising a multipolar rod assembly are described. In some examples, the multipolar rod assembly can be configured to provide a magnetic field and a radio frequency field into an ion volume formed by a substantially parallel arrangement of rods of the multipolar rod assembly. The ionization source may also comprise an electron source configured to provide electrons into the ion volume of the multipolar rod assembly to ionize analyte introduced into the ion volume. Systems and methods using the ionization source are also described.
Abstract:
The invention relates to a holding device for at least one filament, comprising: at least one filament receptacle for receiving the at least one filament. The holding device is designed for the detachable attachment, in particular clamping attachment, of the at least one filament receptacle to a container of an ionization device. The invention also relates to a mass spectrometer comprising: an ionization device having a container in which an ionization space for ionizing a gas is formed, at least one holding device which is designed for the detachable attachment, in particular clamping attachment, of the at least one filament receptacle to the container, and a vacuum housing to which the holding device, in particular a base body of the holding device, is detachably connected.
Abstract:
The electron capture detector (100) is a device for detecting a sample (α1). The electron capture detector (100) includes a detection cell (1), a sample inlet (2), and an electron emitting element (20). The detection cell (1) forms a reaction chamber (6). The sample inlet (2) introduces a first carrier gas containing the sample (α1) into the reaction chamber (6). The electron emitting element (20) emits electrons (β) into the reaction chamber (6). An ion (α2) derived from the sample component is generated as a result of the electron emitting element (20) emitting electrons (β) into the reaction chamber (6).
Abstract:
In order to provide a charged particle beam apparatus capable of stably detecting secondary particles and electromagnetic waves even for a non-conductive sample under high vacuum environment and enabling excellent observation and analysis, the charged particle beam apparatus includes a charged particle gun (12), scanning deflectors (17 and 18) configured to scan a charged particle beam (20) emitted from the charged particle gun (12) onto a sample (21), detectors (40 and 41) configured to detect a scanning control voltage input from an outside into the scanning deflectors, an arithmetic unit (42) configured to calculate, based on the detected scanning control voltage, irradiation pixel coordinates for the charged particle beam; and an irradiation controller (45) configured to control irradiation of the sample with the charged particle beam according to the irradiation pixel coordinates.
Abstract:
In order to provide a charged particle beam apparatus capable of stably detecting secondary particles and electromagnetic waves even for a non-conductive sample under high vacuum environment and enabling excellent observation and analysis, the charged particle beam apparatus includes a charged particle gun (12), scanning deflectors (17 and 18) configured to scan a charged particle beam (20) emitted from the charged particle gun (12) onto a sample (21), detectors (40 and 41) configured to detect a scanning control voltage input from an outside into the scanning deflectors, an arithmetic unit (42) configured to calculate, based on the detected scanning control voltage, irradiation pixel coordinates for the charged particle beam; and an irradiation controller (45) configured to control irradiation of the sample with the charged particle beam according to the irradiation pixel coordinates.