Abstract:
The invention provides a charged particle beam system wherein the middle section of the focused ion beam column is biased to a high negative voltage allowing the beam to move at higher potential than the final beam energy inside that section of the column. At low kV potential, the aberrations and coulomb interactions are reduced, which results in significant improvements in spot size.
Abstract:
A method and system for exposing a target according to pattern data in a maskless lithography machine generating a plurality of exposure beamlets for exposing the target. The method comprises providing input pattern data in a vector format, rendering and quantizing the input pattern data to generate intermediate pattern data, and re-sampling and re-quantizing the intermediate pattern data to generate output pattern data. The output pattern data is supplied to the lithography machine, and the beamlets generated by the lithography machine are modulated on the basis of the output pattern data.
Abstract:
An electron gun includes a cathode portion which emits electrons, an anode portion which accelerates the emission electrons, a bias portion which is arranged between the cathode portion and the anode portion and controls trajectories of the emission electrons, a shielding portion which is arranged below the anode portion and shields some of the emission electrons, and a cooling portion which cools the shielding portion. The bias portion controls the trajectories of the electrons so as to form a crossover between the bias portion and the anode portion, and prevents the electrons from emitting on the anode portion.
Abstract:
A maskless, direct write electron lithography apparatus for accurately and simultaneously writing plural sub-micron patterns on a silicon substrate employs plural parallel electron beams with precise X-Y mechanical translation of the substrate to provide low cost, high throughput integrated circuit (IC) fabrication. Plural compact micro electron gun assemblies arranged in an I×J rectangular grid each simultaneously expose one IC pattern on the substrate, with each electron gun assembly including a K×L array of individually controlled electron guns emitting K×L electron beams. The regular, small spacing between electron beams in each array, i.e., approximately 1 mm or less, requires a correspondingly small X-Y translation of the substrate to write the entire wafer. Each electron gun array includes plural AC blanked cathodes and DC biased plates having plural aligned beam passing apertures. A computer controlled pattern generator synchronized with wafer X-Y translation controls the duration and timing of the cathode blanking signals.
Abstract:
To provide a small electron gun capable of keeping a high vacuum pressure used for an electron microscope and an electron-beam drawing apparatus. An electron gun constituted by a nonevaporative getter pump, a heater, a filament, and an electron-source positioning mechanism is provided with an opening for rough exhausting and its automatically opening/closing valve, and means for ionizing and decomposing an inert gas or a compound gas for the nonevaporative getter pump. It is possible to keep a high vacuum pressure of 10−10 Torr without requiring an ion pump by using a small electron gun having a height and a width of approximately 15 cm while emitting electrons from the electron gun.
Abstract:
An electron gun for emitting an electron beam traveling along a beam axis includes a cathode having a tip, the tip having substantially a circular conic shape and a tip surface substantially at the beam axis, the cathode being applied with a first voltage, an anode having a first aperture substantially on the beam axis and being applied with a second voltage higher than the first voltage, a control electrode having a second aperture substantially on the beam axis and being applied with a voltage lower than the first voltage to control a current of the cathode, the second aperture being larger than the tip surface, a guide electrode having a third aperture substantially on the beam axis, being arranged between the cathode and the anode, and being applied with a voltage higher than the first voltage and lower than the second voltage, the third aperture being smaller than the tip surface, and a lens electrode having a fourth aperture substantially on the beam axis, being arranged between the guide electrode and the anode, and being applied with a voltage lower than the first voltage to form a cross-over image of the electron beam, the fourth aperture being larger than the third aperture.
Abstract:
An electron gun for emitting an electron beam traveling along a beam axis includes a cathode having a tip, the tip having substantially a circular conic shape and a tip surface substantially at the beam axis, the cathode being applied with a first voltage, an anode having a first aperture substantially on the beam axis and being applied with a second voltage higher than the first voltage, a control electrode having a second aperture substantially on the beam axis and being applied with a voltage lower than the first voltage to control a current of the cathode, the second aperture being larger than the tip surface, a guide electrode having a third aperture substantially on the beam axis, being arranged between the cathode and the anode, and being applied with a voltage higher than the first voltage and lower than the second voltage, the third aperture being smaller than the tip surface, and a lens electrode having a fourth aperture substantially on the beam axis, being arranged between the guide electrode and the anode, and being applied with a voltage lower than the first voltage to form a cross-over image of the electron beam, the fourth aperture being larger than the third aperture.
Abstract:
A device and method for cooling the edge of a top plate which partially surrounds an evaporant pocket in an electron beam gun. The invention involves the passage of coolant through a channel in the top plate. The channel is substantially parallel to and close enough to the edge of the top plate so that re-evaporation of evaporant condensed on the edge of the top plate is substantially prevented.
Abstract:
An electron gun comprises a linear thermionic cathode having part of its emitting surface facing an accelerating anode, and the rest of the emitting surface separated by a gap from a cathode-adjacent focusing electrode. The cathode-adjacent focusing electrode is made of two portions spaced apart. On the opposite end surfaces of these portions, there is attached a pair of flat current-conducting springs whose other ends are connected to leads. The other end surfaces of these portions accommodate cathode holders and have a pair of flat springs attached thereto, the other ends of the pair of flat springs being connected to the insulator of the electron gun housing. The pairs of flat springs attached to different portions of the focusing electrode deflect towards each other. The proposed electron gun increases the stability of its electron-optical parameters.
Abstract:
The present disclosure provides an electron source, including one or more tips, wherein at least one of the tips comprises one or more fixed emission sites, wherein at least one of the tips includes one or more fixed emission sites, wherein the emission sites includes a reaction product of metal atoms on a surface of the tip with gas molecules.