Abstract:
An Laser Airborne Depth Sounder (LADS) system for the measurement of water depth is disclosed, the system includes a transmitter and a receiver of laser light having at least two wavelengths so as to receive a first reflection from a water surface and a second reflection from a water bottom an a rotating mirror which directs the laser light to the water and receives the second reflection of the laser light from the water bottom and directs the second reflection to the receiver, where the receiver includes an optical shutter (76) adapted for selectively allowing the passage of the second reflection laser light therethrough. The shutter (76) may include a LCD matrix or mechanical light blocking elements. The LCD matrix may be arranged in a central circle (82), an inner ring (80), and an outer ring (78).
Abstract:
Lithographic apparatuses suitable for, and methodologies involving, complementary e-beam lithography (CEBL) are described. In an example, a blanker aperture array (BAA) for an e-beam tool includes a first column of openings along a first direction, each of the openings of the first column of openings having dog-eared corners. The BAA also includes a second column of openings along the first direction and staggered from the first column of openings, each of the openings of the second column of openings having dog-eared corners. The first and second columns of openings together form an array having a pitch in the first direction. A scan direction of the BAA is along a second direction, orthogonal to the first direction. The pitch of the array corresponds to half of a minimal pitch layout of a target pattern of lines for orientation parallel with the second direction.
Abstract:
A photocathode high-frequency electron-gun cavity apparatus of the present invention is provided with a high-frequency acceleration cavity (1), a photocathode (8, 15), a laser entering port (9), a high-frequency power input coupler port (10), and a high-frequency resonant tuner (16). Here, the apparatus adopts an ultra-small high-frequency accelerator cavity which contains a cavity cell formed only with a smooth and curved surface at an inner face thereof without having a sharp angle part for preventing discharging, obtaining higher strength of high-frequency electric field, and improving high-frequency resonance stability. Further, the photocathode is arranged at an end part of a half cell (5) of the high-frequency acceleration cavity for maximizing electric field strength at the photocathode face, perpendicular incidence of laser is ensured by arranging a laser entering port at a position facing to the photocathode behind an electron beam extraction port of the high-frequency acceleration cavity for maximizing quality of short-bunch photoelectrons, and a high-frequency power input coupler port is arranged at a side part of the cell of the high-frequency acceleration cavity for enhancing high-frequency electric field strength. According to the above, it is possible to provide a small photocathode high-frequency electron-gun cavity apparatus capable of generating a high-strength and high-quality electron beam.
Abstract:
An ultra-miniaturized electron optical microcolumn is provided. The electron optical microcolumn includes an electron-emitting source emitting electrons using a field emission principle, an extraction electrode causing the emission of electrons from the electron-emitting source, a focusing electrode to which voltage is flexibly applied in response to a working distance to a target for regulating a focusing force of electron beams emitted from the electron-emitting source, an acceleration electrode accelerating electrons emitted by the extraction electrode, a limit electrode regulating an amount and a size of electron beams using electrons accelerated by the acceleration electrode, and a deflector deflecting electron beams towards the target.
Abstract:
To obtain effective luminance and light efficiency while avoiding discharge, it is necessary to sufficiently increase a current luminous efficiency of gas and an electron emission efficiency of an electron source. In a fluorescent lamp, an anode electric field is increased by setting a pressure of a noble gas or a molecular gas enclosed to 10 kPa or higher, setting an anode voltage to 240 V or lower, and setting a substrate distance to 0.4 mm or smaller. Furthermore, the resulting effect that the current luminous efficiency is increased in proportion to the electric field is used. Also, by applying a MIM electron source having an electron emission efficiency exceeding 10% as an electron source, a non-discharge fluorescent lamp having a light emission luminance equal to or larger than 104 [cd/m2] and a light emission efficiency equal to or larger than 120 [lm/W] is achieved.
Abstract:
A ribbon-shaped ion beam is modified using multiple coil structures on a pair of opposed ferromagnetic bars. The coil structures comprise continuous windings which have predetermined variations along the length of the bar of turns per unit length. In an example, one coil structure may have uniform turns per unit length along the bar, so that energizing the coil structures forms a magnetic field component extending across the gap between the bars with a quadrupole intensity distribution. A second coil structure may have turns per unit length varying to produce a hexapole magnetic field intensity distribution. Further coil structures may be provided to produce octopole and decapole magnetic field distributions. The coil structures may be energized to produce magnetic fields parallel to the bars which vary along the length of the bars, to twist or flatten the ribbon-shaped beam.
Abstract:
RF field is sensed to produce an incoming voltage that drives a microarray of electron guns in a sweep pattern towards a detector array. The electron guns emit a beam current that may amplify the incoming voltage signal, and the detector material may be selected to amplify the beam current at the detector, for example, by avalanche and/or cascade in a Schottky material, to provide a low current, high gain amplification. The microarrays may be arranged in various combinations to produce successive amplifications, frequency multipliers, transmit-receive amplifiers, crossbar switches, mixers, beamformers, and selective polarization devices, among other such devices.
Abstract:
In order to provide a charged particle beam apparatus capable of stably detecting secondary particles and electromagnetic waves even for a non-conductive sample under high vacuum environment and enabling excellent observation and analysis, the charged particle beam apparatus includes a charged particle gun (12), scanning deflectors (17 and 18) configured to scan a charged particle beam (20) emitted from the charged particle gun (12) onto a sample (21), detectors (40 and 41) configured to detect a scanning control voltage input from an outside into the scanning deflectors, an arithmetic unit (42) configured to calculate, based on the detected scanning control voltage, irradiation pixel coordinates for the charged particle beam; and an irradiation controller (45) configured to control irradiation of the sample with the charged particle beam according to the irradiation pixel coordinates.
Abstract:
In order to provide a charged particle beam apparatus capable of stably detecting secondary particles and electromagnetic waves even for a non-conductive sample under high vacuum environment and enabling excellent observation and analysis, the charged particle beam apparatus includes a charged particle gun (12), scanning deflectors (17 and 18) configured to scan a charged particle beam (20) emitted from the charged particle gun (12) onto a sample (21), detectors (40 and 41) configured to detect a scanning control voltage input from an outside into the scanning deflectors, an arithmetic unit (42) configured to calculate, based on the detected scanning control voltage, irradiation pixel coordinates for the charged particle beam; and an irradiation controller (45) configured to control irradiation of the sample with the charged particle beam according to the irradiation pixel coordinates.
Abstract:
An electron source system utilizing photon enhanced thermionic emission to create a source of well controlled electrons for injection into a series of lenses so that the beam can be fashioned to meet the particular specification for a given use is disclosed. Because of the recent increased understanding and characterization of the bandgap in certain materials, a simplified system can now be realized to overcome the potential barrier at the surface. With this system, only low electric fields with moderate temperatures (˜500 ° C.) are required. The resulting system enables much easier focusing of the electron beam because the random component of the energy of the electrons is much lower than that of a conventional system. The system comprises an emitter of wide bandgap material, a first light source and a heating element wherein the heating element provides moderate warming to the wide bandgap material and the light source provides photonic excitation to the material, causing electrons to be emitted into an optical system to manipulate the emitted electrons.