Abstract:
The plasma display panel of the present invention has, for achieving high luminance and high reliability, a plurality of discharge spaces formed between a front panel and a back panel that are disposed to oppose each other, and phosphor layers, formed in the discharge spaces, each including phosphor particles of one of blue, red and green colors, wherein the phosphor particles of at least one of blue, red and green colors included in the phosphor layer are flake-like particles.
Abstract:
A glass substrate is placed within a vacuum chamber with the surface on which an emissive layer forming an electroluminescence element is to be formed by evaporation facing downward. A mask is disposed within the vacuum chamber. A material of the emissive layer is adhered to the glass substrate through an opening of the mask, to thereby form the emissive layer. When the glass substrate and the mask are aligned, at least three sides of the glass substrate are supported by side supporting members.
Abstract:
The manufacturing method of a flat panel display comprises facing a faceplate, which has a phosphor screen, to a rear plate, which has an electron emitting element, with a predetermined gap, and joining. At least one of a rear plate (20) and a faceplate (10) is accommodated in an electron beam cleaning chamber (42, 46), and, an electron beam (53) is irradiated onto the rear plate (20) or the faceplate (10) from an electron beam generator (52), which is disposed in the electron beam cleaning chamber (42, 46), in a vacuum atmosphere. Thereby, a surface adsorbed gas is sufficiently degassed. Thus, by sufficiently degassing the surface adsorbed gas in the display, the inside of a vacuum vessel as an envelope can be maintained in a high vacuum state.
Abstract:
In a manufacturing process for a plasma display panel, a protective layer 3 formed of MgO is placed in a non-display area of a display space in which introduction of a discharge gas is provided, so as to face the discharge space. Bus electrodes Xb and Yb of row electrodes X and Y are increased in length to continue extending from inside a display area of the plasma display panel into the non-display area, and thus constitute a pair of discharge electrode for causing a discharge in the non-display area of the discharge space in which the introduction of the discharge gas is provided. When the discharge gas is introduced into the discharge gas, a voltage is applied between the discharge electrodes to cause an aging discharge.
Abstract:
After assembling a framework in an approximately rectangular form, a basis plane is formed by grinding a bottom surface of the framework. Then, ends of two opposing sides of the framework on a side opposite to the basis plane are cut in a predetermined shape by shearing. The grinding can be carried out by placing the framework on a grinding surface that is running, while applying substantially no pressurizing force other than the self weight of the framework. According to this method, precision of forming end faces of a framework on which a shadow mask is mounted can be improved. Also, working time can be shortened.
Abstract:
The present invention is a hybrid sealing technique. According to one or more embodiments of the present invention, an unsealed lamp body is heated and a partial pinch seal is performed on a first side of the lamp body at an outer junction area. Then, a shrink seal is applied which completes the sealing process at the first side of the lamp body by sealing an inner junction area on the same side of the lamp body. The present invention retains the benefits of the shrink seal, but alleviates the difficulty associated with holding the electrode assemblies in place when performing a traditional shrink seal. In addition, the machine which holds the electrode assemblies in place is greatly simplified.
Abstract:
Barrier ribs 18 formed on a back substrate PA2 are brought into contact with a bonding paste layer 40 having an even surface, applying a bonding agent Bd evenly to the tops of the barrier ribs. Furthermore, a gas discharge panel having a structure in which discharge mainly occurs at locations distanced from parts of the panel connected using the bonding agent Bd is realized.
Abstract:
An airtight vessel is formed with restraining a vacuum leak and without increase in the number of steps. Provided is a method for producing an image-forming apparatus comprising the airtight vessel in which a rear plate having an electron-emitting device and a wire connected to the element, and a face plate having an electrode are joined to each other through a jointing material, the method comprising the following steps: (A) a first step of forming a first wire which is a part of the wire and which passes through the joint part to connect the inside of the vessel to the outside, by applying a paste comprising particles of an electric conductor and baking the paste; and (B) a second step of forming a second wire located in the vessel, by applying a paste comprising particles of an electric conductor so as to be connected to the first wire inside the vessel and baking the paste, after formation of the first wire.
Abstract:
The present invention provides a method of producing a spacer provided between a first substrate and a second substrate on which an electron emitting device is arranged, the method including the step of forming a film on at least a portion of at least one surface of the spacer. The film forming step includes the step of preparing a bundle of a plurality of spacer base members, and the step of coating a film material on the bundle, and wherein the bundle on which the film material is coated has a mask layer for covering at least a film non-formation portion near the film formation portion of each of the plurality of spacer base members of the bundle.
Abstract:
The light source has an LED, preferably produced for the surface-mounting technique, embedded in a transparent material filling. A converter substance is integrated in the filling for the at least partial wavelength conversion of the light emitted by the LED. A lens is glued onto the transparent material filling. The material filling has a convex surface and the lens has a concave underside entering into a form fit with the convex surface of the material filling.