摘要:
An oscillatory wave drive device has an oscillatory wave driving unit having an electromechanical energy conversion element having drive phases and a detection phase, a diaphragm, and a rotor, in which a traveling wave is generated on the surface of the diaphragm of the electromechanical energy conversion element to drive the rotor, and the driving speed of the rotor is controlled based on a signal of the phase difference detecting unit. In the oscillatory wave drive device, a detection phase voltage step-down unit and a drive phase voltage step-down unit each containing a resistance voltage dividing circuit having at least two resistors are provided and the voltage dividing ratio in the resistance voltage dividing circuit of the detection phase voltage step-down unit is lower than 1/1 and higher than 1/20.
摘要:
Provided is a multi-flap standing wave type ultrasonic motor, including a rotor part, a stator part, a control circuit board, and a fixing attachment. The rotor part includes a flange, a rotor ring, and a shaft. The shaft and the flange are joined together by using a first screw and the flange and the rotor ring are joined together by using a second screw. The stator part includes a piezoelectric ceramics, an excitation ring, and flaps. The piezoelectric ceramics and the excitation ring are fixed with glue, the flaps and the excitation ring are connected through welding, and form an angle with the radial direction of the excitation ring. The stator part is sleeved on a support, is attached to a pressure plate and is connected, through an upright, to a locking plate, and to a substrate of the control circuit board to form a fixing attachment. The flaps are an elastomer and a preload provider. The inner diameter of the rotor ring is less than the outer diameter of the flaps. Adopted is a circular-distributed flap structure, an outer rotor design, an integrated design of motor and control, and a sensor, thereby simplifying the system structure. By adopting circular-distributed assembled flaps, the processing difficulty of the flaps is reduced.
摘要:
A lead screw actuator device includes a base configured to support a plurality of actuators. A first bridge is supported by one of the plurality of actuators and a second bridge is supported by another one of the plurality of actuators. A nut is supported by the first bridge and the second bridge and is rotatably coupled to a screw with a sliding contact friction between the screw and the nut. The plurality of actuators generate small movements of the first bridge, the second bridge, and the nut that produce relative rotation between the nut and the screw. A method of making a lead screw actuator device is also disclosed.
摘要:
A piezoelectric element driving apparatus may apply a predetermined driving signal to a piezoelectric element to drive the piezoelectric element. The driving signal may be an asymmetrical waveform in which amplitudes of first and second polarities thereof are different from each other. An exemplary embodiment in the present disclosure may provide a piezoelectric element driving apparatus and method having a high output while protecting dielectric characteristics of a piezoelectric element by driving the piezoelectric element using an asymmetrical driving signal.
摘要:
A method of controlling an ultrasonic motor coupled to a motor driver circuit, comprises receiving a temperature signal representing the temperature of the ultrasonic motor, receiving a position signal output by a first encoder representing the position of the ultrasonic motor, calculating an error between the position of the ultrasonic motor represented by the position signal and a target position, calculating a control signal based on the temperature of the ultrasonic motor represented by the temperature signal and the calculated error, and sending the control signal to the motor driver circuit to control the ultrasonic motor.
摘要:
A controller capable of improving position detection accuracy during the stopping of an actuator, and controlling the actuator with high stability and quick responsiveness during driving. A first position signal corresponding to an amount of relative movement between the actuator and said driven element is output to a filter, and the filter outputs a second position signal generated by attenuating signal components having frequencies except a specific frequency band. Driving and stopping of the actuator are controlled according to the second position signal. As the specific frequency band, a first frequency band is set in said filter during the driving of the actuator, and a second frequency band is set in said filter during the stopping of the actuator. The first frequency band and the second frequency band both include 0 Hz, and the second frequency band is narrower than the first frequency band.
摘要:
An apparatus for generating sinusoidal waves may include: a look-up table storage unit storing a look-up table including a plurality of sampling points determined based on a base frequency and a sampling frequency; a sinusoidal wave generating unit calculating an integer ratio of a target frequency to the base frequency and obtaining sampling points from the look-up table by reflecting the integer ratio so as to generate a sinusoidal wave; and a correction control unit calculating noise information in the generated sinusoidal wave, and controlling the sinusoidal wave generating unit to correct the sampling frequency if the noise information fails to meet a predetermined requirement.
摘要:
A vibration-type actuator that enables to miniaturize and stabilize pressure state between a driven body and a vibration body. A pressurizing unit applies pressure force between projections on the vibration body and the driven body. A piezoelectric device connected to the vibration body on a surface opposite to the projections moves the driven body by occurring vibration in the vibration body when drive voltage is applied. The pressurizing unit includes an energizing member, its support member, and a transfer member. A length of a contact area between the projections and the driven body is shorter than a length of an area in which the transfer member transfers the pressure force from the energizing member to the vibration body and a length of a contact area between the energizing member and the support member, in a direction perpendicular to the moving direction and to a pressurizing direction by the pressurizing unit.
摘要:
The present invention provides a piezoelectric element that includes a piezoelectric material having first and second surfaces; a common electrode disposed on the first surface; and a plurality of drive phase electrodes, a detection phase electrode, and a non-drive phase electrode disposed on the second surface, the piezoelectric material being sandwiched between the common electrode and the electrodes on the second surface. An absolute value d(1) of a piezoelectric constant of the piezoelectric material (1) in portions sandwiched between the drive phase electrodes and the common electrode, an absolute value d(2) of a piezoelectric constant of the piezoelectric material (2) in a portion sandwiched between the detection phase electrode and the common electrode, and an absolute value d(3) of the piezoelectric material (3) in a portion sandwiched between the non-drive phase electrode and the common electrode satisfy d(2)
摘要:
An ultrasonic motor having an ultrasound actuator in the form of a piezoelectric hollow cylinder with friction elements on at least one of its end surfaces, and having a rotor in effective contact with the friction elements and an electric excitation device. The actuator is subdivided in the circumferential direction in an even number of sectors Sa and Sb with the sectors Sa and Sb alternating and being adjacent in circumferential direction, and the friction elements being arranged in the range of adjacency of neighboring sectors. Each of the sectors Sa and Sb is formed by exciter electrodes and general electrodes alternatingly arranged in the axial direction of the hollow cylinder, wherein a layer of piezoelectric material is arranged between neighboring excitation electrodes and general electrodes.