Abstract:
A plant, comprising: a pyrolysis reactor configured to heat molten mixed plastic waste to produce: pyrolysis gases at a first temperature of around 350° C. to 425° C.; and pyrolysis slurry or pyrolysis char at a second temperature of 722° C. to 1400° C.
Abstract:
The present invention relates to a method for applying biochar to turf and landscape to allow the turf and landscape to be effectively maintained under reduced water and/or reduced fertilizer applications.
Abstract:
A continuous process and apparatus for treating dried coal and coal char to promote passivation of the reactive carbon particles by forming a protective oxide coating and simultaneously adding moisture to rehydrate said particles. The passivation process is conducted in a novel apparatus providing for the staged control of the reaction temperature and the staged introduction of both oxygen and moisture. The fluidized bed apparatus has internal in-bed cooling means embedded within the fluidized coal or coal char particles so as to remove the heat energy as it is released by virtue of the exothermic passivation reactions.
Abstract:
Surface-oxygenated biochar compositions and sonication-ozonization methods create advanced hydrophilic biochar materials having higher cation exchange capacity, optimized pH, improved wettability, and toxin free components. These sonicated and ozonized biochar compositions are used as filtration materials for clean water and air, as phosphorus solubilizing reagents to mix with phosphate rock materials to make a slow-releasing phosphate fertilizer, as biochar soil additives to help solubilize phosphorus and reduce phosphorus fertilizer additions required to achieve desired soil phosphorus activity, crop uptake, and yield goals, as sand soilization reagents by utilizing their liquid gel-forming activity in the spaces among sand particles to retain water and nutrients and hold the sand particles together, as plant growth stimulants by using the humic acids-like surface-oxygenated biochar substances at a proper ppm concentration and as carbon sequestration agents to help control climate change for energy and environmental sustainability on Earth.
Abstract:
Tools and techniques for biochar production and biochar products are provided in accordance with various embodiments. For example, some embodiments include a method of biochar production that may include introducing a compound that includes at least carbon, oxygen, and hydrogen into a reaction chamber. The compound may be heated to a temperature of at least 1,000 degrees Celsius in the reaction chamber such that the compound reacts through a pyrolysis reaction to produce biochar. The produced biochar may be collected and/or further processed in some cases. In some embodiments, the compound includes at least biomass or a waste product. In some embodiments, the temperature of the reaction chamber is at least 1,100 degrees Celsius. In some embodiments, the compound has a residence time in the reaction chamber between 10 seconds and 1,000 seconds to produce the biochar. Some embodiments include biochar that may include graphite or graphene.
Abstract:
A system includes a heat exchange system and a power generation system. The heat exchange system includes first, second, and third heat exchangers each operable as a continuous source of heat from a delayed coking plant. The first and second heat exchangers heat first and second fluid streams to produce heated first and second fluid streams, respectively. The heated second fluid stream has a lower temperature and a greater quantity of heat than the heated first fluid stream. The third heat exchanger heats a third fluid stream to produce a heated third fluid stream that includes the heated first fluid stream and a hot fluid stream. The heated third fluid stream has a lower temperature than the heated first fluid stream. The power generation system generates power using heat from the heated second and third fluid streams.
Abstract:
The invention relates to a process for parallel preparation of hydrogen and one or more carbonaceous products, in which hydrocarbons are introduced into a reaction space (R) and decomposed thermally to carbon and hydrogen in the presence of carbon-rich pellets (W). It is a feature of the invention that at least a portion of the thermal energy required for the hydrocarbon decomposition is introduced into the reaction space (R) by means of a gaseous heat carrier.
Abstract:
An internal combustion heating device of a coal pyrolyzing furnace includes a coke quenching exhaust heater and at least one set of a third gas heater and a fourth gas heater with equal structures and associated with each other; wherein the coke quenching exhaust heater comprises an internal flame path, a first air supply tube, a second air supply tube, a central annular wall and a central path, wherein an internal flame path is divided into at least one set of an internal main flame path and an internal sub flame path, the central annular wall inside the internal loop wall of the carbonizing room and at least one the internal flame path isolating wall; the internal sub flame path is divided into an upper section, a middle section and a lower section.
Abstract:
Methods and apparatus to improve hot gas filtration to reduce the liquid fuel loss caused by prolonged residence time at high temperatures are described. The improvement can be obtained by reducing the residence time at elevated temperature by reducing the temperature of the pyrolysis vapor, by reducing the volume of the pyrolysis vapor at the elevated temperature, by increasing the volumetric flow rate at constant volume of the pyrolysis vapor, or by doing a combination of these.
Abstract:
A process for treating agglomerating coal includes drying coal in a drying step, and treating the dried coal in an oxidizing step to form oxides sufficient to convert the coal into a substantially non-agglomerating coal. The oxidized coal is pyrolyzed in a pyrolysis step to form coal char, and the coal char is cooled. At least one of the drying, oxidizing, and pyrolyzing steps is a dual zone step, with the dual zone step having a first zone and a second zone, with the temperature of the second zone being higher than that of the first zone.