Abstract:
A method of etching a device in one embodiment includes providing a silicon carbide substrate, forming a silicon nitride layer on a surface of the silicon carbide substrate, forming a silicon carbide layer on a surface of the silicon nitride layer, forming a silicon dioxide layer on a surface of the silicon carbide layer, forming a photoresist mask on a surface of the silicon dioxide layer, and etching the silicon dioxide layer through the photoresist mask.
Abstract:
The invention relates to a method of making a component from a heterogeneous substrate comprising first and second portions in at least one monocrystalline material, and a sacrificial layer constituted by at least one stack of at least one layer of monocrystalline Si situated between two layers of monocrystalline SiGe, the stack being disposed between said first and second portions of monocrystalline material, wherein the method consists in etching said stack by making: e) at least one opening in the first and/or second portion and the first and/or second layer of SiGe so as to reach the layer of Si; and f) eliminating all or part of the layer of Si.
Abstract:
A microelectromechanical systems device having support structures formed of sacrificial material surrounded by a protective material. The microelectromechanical systems device includes a substrate having an electrode formed thereon. Another electrode is separated from the first electrode by a cavity and forms a movable layer, which is supported by support structures formed of a sacrificial material.
Abstract:
A method of etching a device in one embodiment includes providing a silicon carbide substrate, forming a silicon nitride layer on a surface of the silicon carbide substrate, forming a silicon carbide layer on a surface of the silicon nitride layer, forming a silicon dioxide layer on a surface of the silicon carbide layer, forming a photoresist mask on a surface of the silicon dioxide layer, and etching the silicon dioxide layer through the photoresist mask.
Abstract:
A microelectromechanical systems (MEMS) device utilizing an aluminum fluoride layer as an etch stop is disclosed. In one embodiment, a MEMS device includes a first electrode having a first surface; and a second electrode having a second surface facing the first surface and defining a gap therebetween. The second electrode is movable in the gap between a first position and a second position. At least one of the electrodes includes an aluminum fluoride layer facing the other of the electrodes. During fabrication of the MEMS device, a sacrificial layer is formed between the first and second electrodes and is released to define the gap. The aluminum fluoride layer serves as an etch stop to protect the first or second electrode during the release of the sacrificial layer.
Abstract:
A method for producing a device with at least one suspended membrane, comprising at least the following steps: producing a trench through a first sacrificial layer and a second layer deposited on the first sacrificial layer, the trench completely surrounding at least a portion of the first sacrificial layer and at least a portion of the second layer, filling all or a portion of the trench with at least one material capable of resisting at least one etching agent, etching said portion of the first sacrificial layer with said etching agent through at least one opening made in the second layer, said portion of the second layer forming at least one portion of the suspended membrane.
Abstract:
This invention discloses a MEMS device supported on a substrate formed with electric circuit thereon. The MEMS device includes at least an electrode connected to the circuit and at least a movable element that is controlled by the electrode. The MEMS device further includes a conformal protective layer over the electrode and the circuit wherein the protective layer is semiconductor-based material. In a preferred embodiment, the MEMS device is a micromirror and the semiconductor material is one of a group of materials consisting of Si, SiC, Ge, SiGe, SiNi and SiW.
Abstract:
A method of manufacturing an external force detection sensor in which a sensor element is formed by through-hole dry etching of an element substrate, and an electrically conductive material is used as an etching stop layer during the dry etching.
Abstract:
A physical quantity sensor includes: a semiconductor substrate; a cavity disposed in the substrate and extending in a horizontal direction of the substrate; a groove disposed on the substrate and reaching the cavity; a movable portion separated by the cavity and the groove so that the movable portion is movably supported on the substrate; and an insulation layer disposed on a bottom of the movable portion so that the insulation layer provides a roof of the cavity.