Abstract:
An apparatus for preparing hydrogen water includes: an electrolysis device configured to electrolyze water and including an electrode module formed of a positive electrode, a negative electrode, a solid polymer electrolyte membrane, and an auxiliary electrode, wherein the electrolysis device is divided into a first chamber and a second chamber with the electrode module as a center; a hydrogen water discharge port configured to discharge hydrogen water including active hydrogen generated at the negative electrode of the first chamber, by being arranged in the first chamber; a spray port configured to spray water toward the negative electrode, by being arranged in the first chamber; an ozone water discharge port configured to discharge water including ozone generated at the positive electrode of the second chamber; a storage tank configured to store hydrogen water and sterilizing water in an internal space thereof, by being connected to a first flow channel connected to the hydrogen water discharge port and to a second flow channel connected to the first flow channel and receiving the hydrogen water generated in the first chamber, and by receiving the sterilizing water generated in the second chamber through a fourth flow channel connected to the ozone water discharge port; and a pump including an output end connected to the a flow channel connected to the spray port and an input end connected to a fifth flow channel connected to a bottom surface of the storage tank, wherein the spray port sprays the hydrogen water stored in the storage tank, using a pressure of the pump, faster than a flow velocity of the hydrogen water discharged through the hydrogen water discharge port.
Abstract:
A conductive micro-channel structure includes a layer having layer edges and an electrode having first and second portions formed in or under the layer. One or more fluid micro-channels are formed in the layer, expose the first portion of the electrode, and extend to a layer edge to form a fluid port. A conductor micro-channel includes a solid conductor in the conductor micro-channel. The solid conductor is electrically conductive, is electrically connected to the second portion of the electrode, and extends from the second portion to a layer edge to form a conductor port.
Abstract:
An electrochemical reactor for removing mining constituents from a fluid is disclosed. The electrochemical reactor includes a housing defining a flow path and a pump configured to continuously move fluid through the flow path at a flow rate. The electrochemical reactor also includes a power supply coupled to the housing, an anode and a cathode coupled to the power supply, and a controller configured to selectively engage the power supply power supply. The power supply applies an electrical potential between the anode and the cathode when engaged.
Abstract:
An apparatus and method for separating, harvesting and primary dewatering microalgae biomass from a microalgae solution by destabilization thereof with addition of kinetic energy thereto is disclosed. The method to overcome the energetic barrier preventing a fluid-solid separation comprises injecting the microalgae solution in an electrolytic system comprising an electrocoagulation reactor generally comprising an anode module and a cathode module, the anodes and the cathode(s) being adapted to be electrically connected to perform electrolysis, thus separating, harvesting and primary dewatering microalgae biomass. Such process is generally achieved by providing a DC electric current, between the anodes and the cathode(s), to perform the separation of the biomass in the solution, in preparation the following process steps of for liquid/solid separation and primary dewatering.
Abstract:
A method and apparatus for the removal of both suspended and dissolved contaminants in a fluid stream, including but not limited to heavy metals, organics, inorganics, hydrocarbons and others. The method combines passing an aqueous fluid stream through an electromagnetic field, an ozone/oxygen venturi injector for oxidation and through a horizontal flow and vertical fall within a horizontal plate maze unit of alternately electrically charged plates. The plates are charged alternately to be cathodes and anodes, respectively. A framework to mount and support membranes, dividers or separators, as may be required to enhance special treatment of the fluid stream, is optionally provided.
Abstract:
An electrolysis water-making apparatus (1) generates electrolyzed products by supplying a raw material solution into an electrolytic cell (4) to perform electrolysis, and generates electrolyzed water by diluting the electrolyzed products. The electrolysis water-making apparatus (1) includes a casing (20) configured to accommodate the electrolytic cell (4), and a bracket (30) fixed to the casing (20) in a freely detachable manner, and the bracket (30) includes a pair of rigid walls to which one end and the other end of the electrolytic cell (4) are attached. The pair of rigid walls have a dimension therebetween that can be adjusted according to the linear dimension of the electrolytic cell (4).
Abstract:
A conductive micro-channel structure includes a layer having layer edges and an electrode having first and second portions formed in or under the layer. One or more fluid micro-channels are formed in the layer, expose the first portion of the electrode, and extend to a layer edge to form a fluid port. A conductor micro-channel includes a solid conductor in the conductor micro-channel. The solid conductor is electrically conductive, is electrically connected to the second portion of the electrode, and extends from the second portion to a layer edge to form a conductor port.
Abstract:
An electrochemical system and method are disclosed for On Site Generation (OSG) of oxidants, such as free available chlorine, mixed oxidants and persulfate. Operation at high current density, using at least a diamond anode, provides for higher current efficiency, extended lifetime operation, and improved cost efficiency. High current density operation, in either a single pass or recycle mode, provides for rapid generation of oxidants, with high current efficiency, which potentially allows for more compact systems. Beneficially, operation in reverse polarity for a short cleaning cycle manages scaling, provides for improved efficiency and electrode lifetime and allows for use of impure feedstocks without requiring water softeners. Systems have application for generation of chlorine or other oxidants, including mixed oxidants providing high disinfection rate per unit of oxidant, e.g. for water treatment to remove microorganisms or for degradation of organics in industrial waste water.
Abstract:
Devices, modules, systems, and methods for the desalination of water provided. The devices, modules, systems can include a desalination member separating a concentrated fluid chamber from a dilute fluid chamber. The desalination member can comprise one or more pores extending through the desalination member to fluidly connect concentrated fluid chamber and the dilute fluid chamber, and one or more electrodes configured to generate an electric field gradient in proximity to the opening of the one or more pores in the desalination member. Under an applied bias and in the presence of a pressure driven flow of saltwater into the concentrated fluid chamber, the electric field gradient can preferentially direct ions in saltwater away from the opening of the one or more pores in the desalination member, while desalted water can flow through the pores into dilute fluid chamber.
Abstract:
An electrodialysis unit 8 comprises a cathode 68, an anode 70, a membrane 71 between the cathode 68 and the anode 70, a cathode flow path 72 for water flow along the membrane 71 on the cathode side, an anode flow path 74 for water flow along the membrane 71 on the anode side, and a reaction zone formed between the membrane 71 and the cathode 68 where the cathode 68 faces the anode 70, wherein the cathode flow path 72 is arranged for laminar flow in the reaction zone and wherein the electrodialysis unit 8 comprises flow conditioning elements 64 arranged to promote laminar flow in the incoming water flow to the cathode flow path 72.