Abstract:
Disclosed is a system and method for treatment of wastewater to destroy organic contaminants using an electrochemical advanced oxidation process. In particular, the method comprises a multistep process, comprising a) generating a concentrated oxidant solution comprising a peroxy oxidant species, such as persulfate or hydrogen peroxide; b) mixing wastewater comprising organic contaminants with the concentrated oxidant solution to provide a mixture comprising wastewater and diluted oxidant, the wastewater and concentrated oxidant solution being mixed in a prescribed ratio to provide a desired concentration ratio of oxidant species to contaminants; and c) in an electrochemical cell comprising a diamond anode, electrolyzing the mixture of wastewater and diluted oxidant, comprising electrochemically activating the peroxy oxidant species for oxidation and destruction of the contaminants. Fast and effective destruction of organic contaminants such as phenol, napthenic acid and other toxic or refractory contaminants is demonstrated at low cost and with reduced usage of added salt.
Abstract:
A diamond electrode and a diamond microelectrode array for biosensors and electroanalytical applications, such as electrochemical impedance spectroscopy (EIS), are disclosed. The electrode comprises a layer of ultra-smooth conductive nanocrystalline diamond (NCD) having a resistivity of >0.05 Ωcm and a surface roughness of
Abstract:
An electrochemical system and method are disclosed for On Site Generation (OSG) of oxidants, such as free available chlorine, mixed oxidants and persulfate. Operation at high current density, using at least a diamond anode, provides for higher current efficiency, extended lifetime operation, and improved cost efficiency. High current density operation, in either a single pass or recycle mode, provides for rapid generation of oxidants, with high current efficiency, which potentially allows for more compact systems. Beneficially, operation in reverse polarity for a short cleaning cycle manages scaling, provides for improved efficiency and electrode lifetime and allows for use of impure feedstocks without requiring water softeners. Systems have application for generation of chlorine or other oxidants, including mixed oxidants providing high disinfection rate per unit of oxidant, e.g. for water treatment to remove microorganisms or for degradation of organics in industrial waste water.
Abstract:
A method of fabrication, a device structure and a submount comprising high thermal conductivity (HTC) diamond on a HTC metal substrate, for thermal dissipation, are disclosed. The surface roughness of the diamond layer is controlled by depositing diamond on a sacrificial substrate, such as a polished silicon wafer, having a specific surface roughness. Following deposition of the diamond layer, an adhesion layer, e.g. comprising a refractory metal, such as tantalum, and at least one layer of HTC metal is provided. The HTC metal substrate is preferably copper or silver, and may be provided by electroforming metal onto a thin sputtered base layer, and optionally bonding another metal layer. The electrically non-conductive diamond layer has a smooth exposed surface, preferably ≦10 nm RMS, suitable for patterning of contact metallization and/or bonding to a semiconductor device. Methods are also disclosed for patterning the diamond on metal substrate to facilitate dicing.