Abstract:
A light integrating interface having a housing made substantially of pressed polytetrafluoroethylene powder. The interface has a non-spherical integrating cavity with a reflective inner surface, as well as a light energy input port and a light energy output port operatively coupled to the integrating cavity.
Abstract:
An arrangement for measuring the power or energy of optical radiation of radiation sources, especially laser radiation is disclosed. It comprises a module defining an open or at least partially closed hollow space, wherein the inner walls or outer walls of the module are entirely or partially occupied by detectors for generating measurement signals which are proportional to the measured parameters of the radiation sources. The detectors are connected together in such a way that their generated measurement signals are further processed to form at least one resultant sum signal or the detectors are connected to a downstream processing device to form at least one resultant sum signal. This at least one resultant sum signal is relatively independent from the position, arrangement and radiating characteristic of the examined radiation source in the module. At least one opening or guide-through is provided in the module for inserting the radiation source to be examined.
Abstract:
Two pairs of pyroelectric devices are each mounted on a cone-shaped substrate to precisely control their alignment. Each cone-shaped substrate is a part of a sensor module which also supports an attenuator, along with a transistor and a resistor chip associated with each pyroelectric device of the pair. The sensor module is provided with a silicon filter through which infrared radiation is transmitted to the pair of pyroelectric devices. Each module is mounted in an inner space formed by two hemispherical lenses which serve to direct light to the module. Two such hemispherical lens-sensor modules are provided in a precise optical arrangement designed to operate in conjunction with associated circuitry in order to detect infrared radiation from any of six distinguishable zones. Applications of such a device include for example cameras and air conditioning systems.
Abstract:
Conventional packaging of optical sensors is of little assistance in determining the location and attitude of the focal place of the sensor 10, since package tolerances lack the requisite precision. Each sensor 10 must be separately focused to its optical assembly 40. Such focusing is expensive, as is the package itself. This invention instead mounts the sensor 10 directly onto one face 28 of a transparent plate 18. Radiation is focused through the plate 18 and onto the sensor 10. Precision alignment targets 12, 22 are formed separately on the sensor 10 (providing a known location of the active image area 14 with respect to the target 12) and on the plate 18 (providing a known location of the edges 24 of the plate 18 with respect to the target 22). The targets 12, 22 are aligned, and contact pads 16, 30 on the sensor 10 and on the plate 18 are joined by electronically conductive bumps 36 of known thickness. The plate 18 itself is of known thickness. The location and attitude of the edges 24 of the plate 18, and of the opposite side 46 of the plate 18, may readily be determined, yet these locations and attitudes are all that is required to determine the location and attitude of the active image area 14, and thus to place the active image area 14 precisely in the focal plane of the optics 40. Moreover, microlenses 52 may be formed in the plate 18, one for each sensor cell 48 in the active image area 14, thereby greatly enhancing the light-gathering capacity of the sensor 10.
Abstract:
In a photo-detector, a window pane member for covering a photosensitive semiconductor is selected from among plural samples having light transmittances different from each other in compliance with an intensity of output of the photosensitive semiconductor detected under a constant quantity of light incident on the photosensitive semiconductor, thereby compressing dispersion of outputs in the plural photo-detectors into a small range as a whole.
Abstract:
An optical receiver assembly includes a generally flat, stainless steel optical receiver mount for mounting a KOVAR hybrid detector package above a printed wiring board, the detector package having a light transmissive window, a cap, and a mounting flange, the flange being mechanically fastened to the underside of the receiver mount such that the cap protrudes through the opening therein.
Abstract:
A photoelectric device is provided which incorporates a one piece housing having a first end which is light transmissive and liquid impermeable. An opening is provided at the other end of the tubular structure for insertion of photoelectric and electronic components into the cavity of the housing structure. A cover is used to seal an opening at the second end. The cover is ultrasonically welded to the second end of the tubular structure and a cable means is provided to permit electrical current to pass through the cover at the second end of the housing structure. The first end of the tubular structure, which is transmissive to visible, infrared or ultraviolet light can be formed into one or more lenses, depending on the application of the photoelectric device. Threads are provided in the outer cylindrical surface of the housing to aid in attaching the photoelectric device to brackets with the use of threaded nuts.
Abstract:
A luminosity and temperature detector for an internal combustion engine and method for measuring luminosity including a light probe and photodiode that receives the light transmitted from the light probe. The photodiode is designed, constructed and biased to operate within the zero temperature coefficient portion of its range for the wavelengths being measured. In addition, the dark current is measured when there is no luminosity due to combustion and this is subtracted from the other readings to obtain temperature compensation. Furthermore, the dark current measurement will indicate the temperature of the photodiode.
Abstract:
A scanning device adapted to be associated with a radiant energy measuring meter such as a luminance photometer to provide precision linear or angular scanning across an area of an object or a subject being measured without relative movement of the meter or subject. A scanning device which includes an optical assembly having an objective lens and a prism movable as a unit along or about the optical axis portion of light beams reflected or folded by and between the prisms whereby light received by the photometer is on the optical axis of the photometer regardless of the position of the movable optical assembly on the folded optical axis portion. Means are provided for moving the movable optical assembly linearly with respect to the optical axis portion for linear transverse scanning of a subject area or rotatively about said optical axis portion for angular scanning of a subject area. A scanning device for a luminance photometer which provides scanning microphotometric capability as, for example, to determine luminous cross-section of a cathode ray tube display.
Abstract:
A light probe for use with a photometer includes a silicon photo-voltaic sensor mounted behind a specially designed lens which accurately corrects the sensor to a cosine distribution curve. A light-blocking eyebrow is disposed around the lens to control the light relative to the lens surface. The measured light distribution as detected by the sensor is a function of the curvature, diffusion factor, and surface roughness of the lens, and the relationship of the eyebrow to the lens.