Abstract:
A hydrocarbon stream, such as natural gas, is commonly cooled together with a first refrigerant stream, against an evaporating refrigerant in a series of one or more consecutively arranged common heat exchangers. The series comprises of one or more consecutively arranged common heat exchangers comprise a first common heat exchanger, upstream of which first common heat exchanger the hydrocarbon stream and the first refrigerant stream are not commonly cooled. The hydrocarbon stream to be cooled is fed into the first common heat exchanger at a hydrocarbon feeding temperature, while the first refrigerant stream is fed into the first common heat exchanger at a refrigerant feeding temperature. The temperature difference between the hydrocarbon feeding temperature and the refrigerant feeding temperature is lower than 60° C.
Abstract:
A method for producing oil from a fractured oil bearing formation is provided in which an oil recovery formulation comprising water and dimethyl ether is introduced into a fracture in the formation to mobilize oil, the mobilized oil is contacted with water or brine, and the mobilized oil is produced from the formation at a location positioned upwards from the fracture.
Abstract:
A method for appraising a deepwater well comprising: producing a first quantity of hydrocarbon from an undersea reservoir; transporting the first quantity of hydrocarbon to a floating vessel; off loading the first quantity of hydrocarbon from the vessel; producing a second quantity of hydrocarbon from the undersea reservoir; and transporting the second quantity of hydrocarbon to the floating vessel.
Abstract:
Fermentable sugar useful for the production of biofuels can be produced from biomass by contacting the biomass with a solution containing at least one α-hydroxysulfonic acid. The α-hydroxysulfonic acid can be easily removed from the product and recycled.
Abstract:
A subsea accumulator comprising: an outer wall; a top surface; a bottom surface; and a piston disposed within the subsea accumulator, wherein a first chamber is defined by the top surface, the outer wall, and a top portion of the piston; a second chamber is defined by the bottom surface; the outer wall, and a bottom portion of the piston; and a solid oxidant is disposed within the first chamber.
Abstract:
Decreasing the water content of an organic phase can often be desirable, but low water levels can be difficult to achieve at high fluxes when the water is present in an emulsified form, such as in a water-in-oil emulsion. Processes for de-emulsifying a fluid stream containing emulsified water, such as water-in-crude oil emulsions, include introduction of the fluid stream into a vessel that defines a coalescence zone. The vessel is configured to provide for simultaneous application of a centrifugal force and an electric field to the fluid stream within the coalescence zone. The simultaneous application of the centrifugal force and the electric field to the fluid stream provides for the coalescence of a portion of the emulsified water into a bulk aqueous phase. A biphasic mixture comprising continuous phases of the organic component and the bulk aqueous phase is formed within the coalescence zone and subsequently removed from the vessel.
Abstract:
Digestion of cellulosic biomass solids may be complicated by release of lignin therefrom. Methods and systems for processing a reaction product containing lignin-derived products, such as phenolics, can comprise hydrotreating the reaction product to convert the lignin-derived products to desired higher molecular weight compounds. The methods and systems can further include separating the higher molecular weight compounds from unconverted products, such as unconverted phenolics, and recycling the unconverted phenolics for use as at least a portion of the digestion solvent and for further conversion to desired higher molecular weight compounds with additional hydrotreatment. The methods and systems can further include a further hydrotreatment step configured for additional lignin conversion and/or a further hydrotreatment step configured for generating hydrogen.
Abstract:
The invention provides a process for the preparation of monoethylene glycol from sucrose comprising the steps of: i) hydrolysing sucrose to form a reaction product stream comprising glucose and fructose; ii) separating the reaction product stream comprising glucose and fructose into a fructose or fructose derivative rich stream and a glucose rich stream; and iii) contacting the glucose rich stream with hydrogen in a reactor in the presence of a solvent and a catalyst system with catalytic hydrogenation abilities to produce a product stream comprising monoethylene glycol.
Abstract:
An insert to convert a conventional rotary drill bit to a rotary steerable bit for a rotational directional drilling system. The insert comprises a cylindrical body adapted to be arranged within an intermediate space of the drill bit for receiving drilling fluid from a drill string and selectively directing the drilling fluid to nozzles of the drill bit. The insert may be rotatable and connected to a geostationary platform. Alternatively, the insert may be fixated in the drill bit, combined with a flow diverter connected to a geostationary platform. The insert is suitable to be introduced in the drill bit at a drilling location, including remote locations and off-shore rigs.
Abstract:
A method, system and bit steering assembly for directional drilling of a borehole in a formation is presented. The method includes the steps of: providing a drill string having a central fluid passage extending along a longitudinal axis of the drill string for passing drilling fluid to the drill bit. The drill bit has a plurality of nozzles for expelling the drilling fluid, wherein each nozzle is arranged eccentrically with respect to the longitudinal axis. The method includes introducing a bit steering assembly, rotating the drill string, and pumping drilling fluid through the central fluid passage. The drilling fluid activates a first impeller of a first rotor section to rotate in a first direction, and activates a second impeller of a second rotor section to rotate in a second direction opposite the first direction. The method includes adjusting a coupling between the first rotor section and the second rotor section.