Abstract:
Aspects of the present disclosure are directed to the mitigation of multi-path interference from quasi-single-mode fiber using hybrid span configuration and digital signal processing wherein a hybrid span of quasi-single mode fibers and single-mode fibers are used to configure the hybrid span. Additional aspects are directed to introducing a low-baud rate sub-banding signal to reduce the number of DD-LMS taps required when compensating the multi-path interference as the low-baud rate signal requires fewer taps to cover a given range of MPI as compared to a high-baud rate signal. Finally further aspects are directed to an ALMS equalizer which further reduces the number of equalizer taps by shifting its center tap towards the right if higher-order modes transmit slower than a fundamental mode, otherwise the center tap is shifted to the left.
Abstract:
A network apparatus used in an optical network is disclosed. The network apparatus includes one or more first tunable and temperature controlled (TTC) lasers, one or more transmitters each of which is connected to one of said one or more TTC lasers, one or more second TTC lasers, one or more digital signal processing (DSP) transponders (TPNDs) each of which is connected to one of said one or more second TTC lasers, one or more receivers, and a controller to control said one or more transmitters and said one or more DSP TPNDs, wherein said one or more transmitters defragment an optical access spectrum, and said one or more DSP TPNDs exploit a newly available spectrum. Other apparatuses, systems, and methods also are disclosed.
Abstract:
A method and system for remote sensing. The method includes applying an orbital angular momentum (OAM) mode on a light beam to generate an OAM light beam having an optical OAM spectrum, exposing a target object to the OAM light beam such that the target object absorbs energy of the OAM light beam to generate ultrasonic emissions, the ultrasonic emissions having a reflected OAM spectrum associated with the target object, and generating a high resolution image of the target object based on the reflected OAM spectrum.
Abstract:
A method implemented in a base station used in a wireless communications system is disclosed. The method comprises having 1-layer, 2-layer, 3-layer, and 4-layer codebooks for 4 transmit antenna (4TX) transmission, each codebook including a plurality of precoding matrices, precoding data with one of the plurality of precoding matrices, and transmitting, to a user equipment, the precoded data, wherein each of the 1-layer and 2-layer codebooks comprises a first codebook and a second codebook, and wherein each precoding matrix in the first codebook comprises a first index and a second index. Other apparatuses, systems, and methods also are disclosed.
Abstract:
Systems and methods are disclosed for data communication by performing RF sub-band multiplexing and demultiplexing by cascading a radio-frequency (RF) mixing module and optical dual-polarized (DP) QPSK modulator forhybrid RF/optical IQ modulation; and performing intra-transceiver optical superchannel switching through the RF sub-band multiplexing.
Abstract:
A method and system are described for providing hitless protection in a packet switched network having source nodes and destination nodes. The method includes enabling a working path and a protecting path between the source and destination nodes. The working path is non-overlapping with respect to the protecting path. The method further includes replicating traffic in a given one of the source nodes to generate replicated traffic. The method also includes forwarding the traffic and the replicated traffic through a working path and a protecting path, respectively, from the given one of the source nodes to a particular one of the destination nodes. The method additionally includes delivering a hitless-protected service in the particular one of the destination nodes by selecting traffic packets received from either the working path or the protecting path.
Abstract:
Methods and systems for data flow control include establishing a first connection between a gateway and a network client responsive to a connection request from the network client; establishing a second connection between the gateway and a server specified by the connection request; determining a user class for the network client based on a level of network congestion detected at the gateway based on throughput and round-trip-time delays; modifying a data flow received at the gateway on the second connection to remove data from the flow based on the determined user class of the network client; and transmitting the modified data flow to the network client via the first connection.
Abstract:
A system includes a task scheduler that works collaboratively with a flow scheduler; a network-aware task scheduler based on software-defined network, the task scheduler scheduling tasks according to available network bandwidth.
Abstract:
Systems and methods are disclosed for receiving data by radio frequency (RF) mixing to down-convert in-phase and quadrature parts of a photo-detected electrical RF band signal to baseband for data conversion; controlling a mixing phase of a electrical local oscillator (LO) at one or more RF mixing modules; selecting one of the RF sub-bands to be down-converted to baseband after coherent photo-detection; and performing RF sub-band de-multiplexing for ultra-wide band optical digital coherent detection.
Abstract:
Data is routed in a mesh network of devices that can communicate wirelessly through a plurality of technologies. One or more of such devices receive broadcast message(s) from a destination device intended to receive the data, and generate a first radio link quality metric (RLQM) value based on the broadcast message(s). A source device originates and delivers a quantum of data with an embedded first RLQM value. A set of intermediate devices relays the quantum of data if a forwarding criterion is fulfilled; the forwarding criterion is based in part on the first RLQM value and a second RLQM value generated by an intermediate device in the set of intermediate devices based on the broadcast message(s). The intermediate device exploits an optical interface to transmit the quantum of data. The destination device broadcasts an acknowledgement signal in response to receiving intended data.