Abstract:
Drive assemblies for partition systems may include a motor and a power transmission mechanism operably coupled to a drive shaft of the motor. The power transmission mechanism may include a first bevel gear rotatable by the drive shaft and a second bevel gear positioned for engagement with the first bevel gear. The second bevel gear may include an axis of rotation oriented at least substantially perpendicular to an axis of rotation of the first bevel gear. A disengagement mechanism may be coupled to at least one of the first bevel gear or the second bevel gear and configured to selectively engage and disengage the first bevel gear and the second bevel gear.
Abstract:
Provided is a magnetic hinge device including a rotor having an elongated body with a rotor surface at least one permanent rotor magnet coupled to the rotor surface. A stator including an inner surface that defines a cavity to receive the rotor, the rotor is positioned within the stator along a common axis of rotation. The inner surface of the stator is generally radially continuous having a first edge portion and a second edge portion such that the first edge portion is attached to the second edge portion at an offset. The stator having at least one permanent stator magnet coupled to the inner surface. The rotor includes a radial position that is configured to rotate to a neutral position within the stator. The neutral position along the common axis of rotation is in approximate alignment with the offset.
Abstract:
A drive unit comprising a guide channel that has a first pulley at one end that rotates about a fixed pulley axis. The drive unit also includes a flexible drive member having a plurality of spaced windows, an attachment assembly moveably attached to the guide channel, and an adjustable pulley assembly coupled to the guide channel that has a second pulley that rotates around a moveable pulley axis that can be adjusted to change the distance between the fixed pulley axis and the moveable pulley axis to take up slack in the flexible drive member.
Abstract:
A method of motorized movement of a vehicle door, wherein the vehicle door can be moved from an open position to a closed position as part of a closing process with a door drive mechanism associated with the vehicle door and a control system. In a first section of the closing process the vehicle door is moved by the door drive mechanism from the open position to a comfortable open position that lies between the open position and the closed position. In a second section of the closing process, the vehicle door is further moved from the comfortable open position in the closing direction, preferably to the closed position, manually by the user and largely free of the door drive mechanism.
Abstract:
The invention relates to a device and a method for actuating a motor vehicle closing device and in particular a motor vehicle side door. The basic structure comprises a motor and optionally a connected transmission and/or a downstream coupling. Also, at least one sensor which is connected to a control unit is provided. According to the invention, the sensor, including the control unit are designed to detect a position (angle α) of the motor vehicle closing device with respect to a motor vehicle body and also at least one additional functional state of the motor vehicle closing device.
Abstract:
A vehicle includes sidewalls, a tailgate located proximate to rear ends of the sidewalls, and a tailgate energy management system. The tailgate energy management system includes a governor coupled to one of the sidewalls and to the tailgate. The governor selectively applies a governing force to the tailgate to reduce an opening speed of the tailgate. The tailgate energy management system also includes a speed sensor sensing an opening speed of the tailgate and an electronic control unit electronically coupled to the governor and the speed sensor. The electronic control unit includes a processor and memory storing an instruction set. The electronic control unit receives a speed signal indicative of the opening speed of the tailgate and the processor executes the instruction set to cause the electronic control unit to transmit a control signal to the governor to slow the opening speed of the tailgate based on the speed signal.
Abstract:
A system, method, and computer storage configured for determining period-ending positions of multiple parts movable by select actuation of corresponding active materials. The operations include receiving, from a work-source sensor, work-source input indicating a distance moved by the work source and a direction of the movement, and determining, based on the work-source input and a first and second status histories, corresponding to a first and a second part, respectively, first and second distances travelled by the parts, respectively. Operations also include calculating, based on the first and second distances determined and first and second period-starting positions, corresponding to the first and second parts, respectively, first and second period-ending positions for the first and second parts, respectively.
Abstract:
A vehicle includes sidewalls, a tailgate located proximate to rear ends of the sidewalls, and a tailgate energy management system. The tailgate energy management system includes a governor coupled to one of the sidewalls and to the tailgate. The governor selectively applies a governing force to the tailgate to reduce an opening speed of the tailgate. The tailgate energy management system also includes a speed sensor sensing an opening speed of the tailgate and an electronic control unit electronically coupled to the governor and the speed sensor. The electronic control unit includes a processor and memory storing an instruction set. The electronic control unit receives a speed signal indicative of the opening speed of the tailgate and the processor executes the instruction set to cause the electronic control unit to transmit a control signal to the governor to slow the opening speed of the tailgate based on the speed signal.
Abstract:
A vehicle door control method includes operating a vehicle door handle to disengage a door lock device of a vehicle door, beginning to count time upon the operation of the door handle, if the vehicle door has moved from a fully closed position after the door lock device has been disengaged, operating a power assist mechanism to move the vehicle door in an opening direction, if the vehicle door has not moved from the fully closed position, operating the power assist mechanism to urge the vehicle door to move in the opening direction, if the vehicle door moves while being urged by the power assist mechanism, the operation of the power assist mechanism is continued to move the vehicle door in the opening direction, if the vehicle door does not move while being urged by the power assist mechanism, the power assist mechanism is operated in a direction which urges the vehicle door to move to the fully closed position.
Abstract:
A drive device is provided with a housing 11 and an electromagnetic clutch mechanism 14 accommodated in the housing. The electromagnetic clutch mechanism 14 is provided with an armature 41 rotatably supported in the housing 11, a rotor 42 arranged to face the armature 41 and rotatably supported in the housing 11, and a coil 46. An annular magnet 44 is fixed on the outer circumference surface of the rotor 42. A sensor 15 arranged inside the housing 11 detects a polarity change of the magnet 44 in association with rotation of the rotor 42. The magnet 44 is provided with an annular wall portion 44b extending toward the armature 41 beyond a surface on which the armature 41 is in contact with the rotor 42 with respect to the axial direction. The annular wall portion 44b is spaced radially outward from the armature 41. The annular wall portion 44b prevents abrasion powder produced on actuation of the electromagnetic clutch mechanism 14 from being scattered.