Abstract:
An FED device includes an anode electrode formed on a substrate; a phosphor layer formed on the anode electrode; and field emission devices for emitting at least two electron beams onto the phosphor layer. An area where a fluorescent material is excited can be enlarged and luminance and efficiency of the FED can be enhanced.
Abstract:
An image-forming apparatus of the present invention includes: a vacuum container constituted by disposing in opposition to each other a rear plate with an electron source formed thereon, and a face plate having an image display region provided with at least phosphors for being irradiated with electrons emitted from the electron source to form an image and anodes disposed on the phosphors; anode potential supplying means for supplying an electric potential higher than that of the electron source to the anode; at least one electroconductive member provided at a site outside of the image display region on an inner surface of the face plate; potential supplying means for supplying to the electroconductive member an electric potential at a level between a lowest electric potential of those which are applied to the electron source and an electric potential applied to the anode; first and second resistant members electrically connected between the anode and the electroconductive members, having resistances higher than that of the anode and having different resistances from each other, wherein the anode, the first resistant member, the second resistant member, and the electroconductive member are electrically connected in series.
Abstract:
A fabrication method for an electron source substrate comprises: a measurement step wherein at least one of a substrate, having a plurality of pairs of electrodes on the surface thereof, and measurement means for measuring the position of the substrate in at least one direction of the mutually orthogonal XYZ directions, is scanned relatively in one direction, thereby measuring the substrate position; a control step for controlling the discharge position of droplets containing electroconductive thin-film material onto the substrate from an ink-jet head, based on the measurement results; and a discharge step for discharging the droplets between the pairs of electrodes while relatively scanning at least one of the ink-jet head and substrate in one direction; wherein the scanning direction in the measurement step and the scanning direction in the discharge step are generally parallel; and wherein the measurement step and the discharge step are performed in a single scan.
Abstract:
A method and an apparatus of manufacturing an image displaying apparatus having an electron source substrate and a phosphor substrate. The electron source substrate is provided with an electron emitting element formed by covering with a container and by applying a voltage to an electronic conductor on the substrate. While, the phosphor substrate is provided with a phosphor thereon. The substrates are subjected to a getter processing and to a seal bonding process under a vacuum condition through a processing chamber, to complete an image forming apparatus. An improvement resides in miniaturizing and simplifying operation, and in greater manufacture speed and mass production.
Abstract:
An image display apparatus is provided, in which the generation of discharge can be suppressed and a preferable display image can be obtained. A method of manufacturing an image display apparatus having an airtight container including a rear plate having a plurality of electron-emitting devices and a face plate which is located opposite to the rear plate and has a phosphor and an electroconductive film, includes the steps of, (A) disposing the rear plate having the plurality of electron-emitting devices and the face plate having the phosphor and the electroconductive film such that the rear plate and the face plate are opposite to each other and arranging a plurality of plate shaped spacers between the rear plate and the face plate to assemble the airtight container, and (B) applying an electric field between the rear plate and the face plate in a state that the airtight container is slanted such that a longitudinal direction of the plate-shaped spacers is not perpendicular to a gravitational direction.
Abstract:
This invention provides an arrangement for alleviating the electric charge of members apt to be electrically charged such as spacers used in an electron beam apparatus by arranging a high resistance film thereon. Particularly, the low resistance layer arranged at each of the members is covered by a high resistance film to suppress any electric discharges.
Abstract:
The present invention discloses a film comprising at least a compound of germanium as a film structure capable of suppressing influence of electrification. It also discloses an electron beam system, particularly an image forming system, using a member having the film comprising at least a compound of germanium. It further discloses a manufacturing method of the image forming system.
Abstract:
In a display panel constituted by an airtight container substantially evacuated in which a plurality of spacers are interposed between an electron source on which a plurality of electron-emitting devices are arranged, and a face plate which is arranged in correspondence with the electron source and has a fluorescent substance for emitting light by collision against electrons, an acceleration electrode is arranged on the face plate side and receives a high voltage to accelerate electrons emitted by the electron source toward the fluorescent substance. A discharge phenomenon generated by application of the high voltage via the spacer, or a current according to the discharge is detected. The acceleration electrode is made up of a plurality of divided electrodes to accurately grasp the location where the discharge occurred.
Abstract:
A plurality of kinds of ink jet devices (109 and 110) are properly used for regions. For element electrode pairs (2 and 3) arranged in the vicinity of the fixed position of a spacer (91), for example, there is used an ink jet device (109) having an excellent performance such as a drop placement accuracy or a drop volume accuracy. For the remaining element electrode pairs (2 and 3), there are used ink jet devices (110) having an inferior performance. As a result, an electron source substrate of a high quality can be manufactured at a low cost and in a high throughput.
Abstract:
An image display apparatus includes a display panel having an electron source, an acceleration electrode for accelerating electrons emitted from the electron source and phosphors for emitting light by collision of electrons accelerated by the acceleration electrode, and a detector for detecting a current flowing through the acceleration electrode during a non-display period. In addition, a controller is provided to decrease the luminance level, stop display driving or transmit warning information when the current detected becomes more than a predetermined value.