VNW SRAM with trinity cross-couple PD/PU contact and method for producing the same

    公开(公告)号:US10290639B2

    公开(公告)日:2019-05-14

    申请号:US15702243

    申请日:2017-09-12

    Inventor: Hui Zang

    Abstract: A method of forming a VNW SRAM device with a vertical cross-couple/PD/PU contact landed on a PD/PU gate and a bottom nRX and pRX interface and the resulting device are provided. Embodiments include forming a first and a second bottom nRX and pRX over an NW upon a p-sub, the pRX formed between the nRX; forming fins over the first nRX, the first pRX, the second pRX, and over the second nRX; forming a first GAA perpendicular to and over the second pRX and nRX, a second GAA perpendicular to and over the first nRX and pRX, a third GAA perpendicular to and over a portion the first nRX, and a fourth GAA perpendicular to and over a portion of the second nRX; and forming a first and a second metal gate contact on the first GAA, nRX, and pRX and on the second GAA, pRX, and nRX, respectively.

    Passive device structure and methods of making thereof

    公开(公告)号:US10276560B2

    公开(公告)日:2019-04-30

    申请号:US15638850

    申请日:2017-06-30

    Inventor: Bingwu Liu Hui Zang

    Abstract: Structures for a passive device of an integrated circuits and associated fabrication methods. A semiconductor substrate having raised fins and an dielectric isolation layer between the fins is formed. An etch stop layer is formed over the dielectric isolation layer between fins of a passive device. An interlayer dielectric layer is formed over the fins and etch stop layer. The interlayer dielectric layer is selectively etched to form an opening for conductive contact to the fins, where the etch stop layer prevents etching of the dielectric isolation layer. A conductive contact is formed to contact the plurality of fins, with the conductive contact terminating at the etch stop layer.

    Source/drain parasitic capacitance reduction in FinFET-based semiconductor structure having tucked fins

    公开(公告)号:US10243059B2

    公开(公告)日:2019-03-26

    申请号:US15994614

    申请日:2018-05-31

    Abstract: A method of reducing parasitic capacitance includes providing a starting semiconductor structure, the starting semiconductor structure including a semiconductor substrate with fin(s) thereon, the fin(s) having at least two dummy transistors integrated therewith and separated by a dielectric region, the dummy transistors including dummy gates with spacers and gate caps, the fin(s) having ends tucked by the dummy gates. The method further includes removing the dummy gates and gate caps, resulting in gate trenches, protecting area(s) of the structure during fabrication process(es) where source/drain parasitic capacitance may occur, and forming air-gaps at a bottom portion of unprotected gate trenches to reduce parasitic capacitance. The resulting semiconductor structure includes a semiconductor substrate with fin(s) thereon, FinFET(s) integral with the fin(s), the FinFET(s) including a gate electrode, a gate liner lining the gate electrode, and air-gap(s) in gate trench(es) of the FinFET(s), reducing parasitic capacitance by at least about 75 percent as compared to no air-gaps.

    METHOD OF FORMING VERTICAL FIELD EFFECT TRANSISTORS WITH SELF-ALIGNED GATES AND GATE EXTENSIONS AND THE RESULTING STRUCTURE

    公开(公告)号:US20190088767A1

    公开(公告)日:2019-03-21

    申请号:US15709500

    申请日:2017-09-20

    Abstract: Disclosed is a method of forming an integrated circuit (IC) that incorporates multiple vertical field effect transistors (VFETs) (e.g., in a VFET array). In the method, self-aligned gates for each pair of VFETs and a self-aligned gate extension for contacting those self-aligned gates are essentially simultaneously formed such that the gates wrap around a pair of semiconductor fins, which are in end-to-end alignment, and such that the gate extension fills the space between adjacent ends of those semiconductor fins. By forming self-aligned gates and a self-aligned gate extension for a pair of VFETs, the method avoids the need for lithographically patterning extension cut isolation regions between adjacent pairs of VFETs in a VFET array. Thus, the method enables implementation of VFET array designs with a reduced fin pitch without incurring defects caused, for example, by overlay errors. Also disclosed herein is an IC formed according to the method.

    Gate cut structure with liner spacer and related method

    公开(公告)号:US10236213B1

    公开(公告)日:2019-03-19

    申请号:US15917940

    申请日:2018-03-12

    Abstract: A gate cut structure for finFETs, and a related method, are disclosed. The gate cut structure separates and electrically isolates an end of a first metal gate conductor of a first finFET from an end of a second metal gate conductor of a second finFET. The gate cut structure includes a body contacting the end of the first and second metal gate conductors. A liner spacer separates a lower portion of the body from an interlayer dielectric (ILD), and an upper portion of the body contacts the ILD. During formation, the liner spacer allows for a larger gate cut opening to be used to allow quality cleaning of the gate cut opening, but also reduction in size of the spacing between metal gate conductor ends of the finFETs. In one example, the body may have a lower portion having a width less than an upper portion thereof.

    Vertical-transport transistors with self-aligned contacts

    公开(公告)号:US10230000B2

    公开(公告)日:2019-03-12

    申请号:US15671605

    申请日:2017-08-08

    Abstract: Methods and structures that include a vertical-transport field-effect transistor. A semiconductor fin is formed that projects from a first source/drain region. A second source/drain region is spaced vertically along the semiconductor fin from the first source/drain region. A gate stack is arranged between the second source/drain region and the first source/drain region. A spacer is formed adjacent to a sidewall of the second source/drain region. A first contact is connected with a top surface of the second source/drain region, a second contact is connected with a top surface of the first source/drain region, and a third contact is connected with a top surface of the gate stack. The spacer is arranged between the second source/drain region and the second contact or between the second source/drain region and the third contact.

    Methods, apparatus and system for vertical finFET device with reduced parasitic capacitance

    公开(公告)号:US10204904B2

    公开(公告)日:2019-02-12

    申请号:US15592172

    申请日:2017-05-10

    Abstract: A method, apparatus and system are disclosed herein for a finFET device having an air gap spacer and/or a tapered bottom dielectric spacer for reducing parasitic capacitance. A first source/drain (S/D) region is formed on a substrate. A set of fin structures are formed above the first S/D region. A gate region is formed above the first S/D region and adjacent at least a portion of the fin structures. A space for an air gap is formed above the gate region. A top epitaxial (EPI) feature is formed extending over the space for the air gap, thereby forming an air gap spacer between the top epitaxial feature and the gate region.

Patent Agency Ranking