Abstract:
A method is disclosed for processing a rubber composition comprising thermomechanically mixing at a rubber temperature in a range of 140.degree. C. to 190.degree. C. for a mixing time of 1 to 20 minutes (i) 100 parts by weight of at least one sulfur vulcanizable elastomer selected from conjugated diene homopolymers and copolymers, natural rubber and copolymers of at least one conjugated diene and aromatic vinyl compound; (ii) 10 to 250 phr of particulate precipitated silica; (iii) 0.01 to 1.0 parts by weight per weight of said silica of an organosilicon compound; and (iv) 0.05 to 10 phr of sodium thiosulfate pentahydrate. Addition of the sodium thiosulfate pentahydrate to sulfur vulcanizable rubber, silica and sulfur containing organosilicon compound decreases the mixing/processing time without sacrificing end product properties.
Abstract:
A pneumatic tire having a rubber sidewall including (A) 30 to 80 phr of natural rubber; (B) 20 to 70 phr of cis 1,4-polybutadiene rubber; (C) from 10 to 100 phr of silica; and (D) from 1 to 30 phr of a particulate rubber gel filler selected from the group consisting of polybutadiene gel, styrene butadiene gel, acrylonitrile-butadiene gel, chloroprene gel, natural rubber gel, and mixtures thereof.
Abstract:
A pneumatic runflat tire comprising a sidewall component comprising a rubber composition comprising at least one diene based elastomer and from about 1 to about 40 phr of glass bubbles having a crush strength of at least 10,000 psi as measured by ASTM D3102-78 in glycerol.
Abstract:
This invention relates to a pneumatic rubber tire having a circumferential rubber tread of a lug and groove configuration which extends to a substantial portion an adjacent rubber sidewall and is designed to be ground-contacting. Said lug and groove configured portion of said sidewall is of a rubber composition comprised of a blend of cis 1,4-polyisoprene natural rubber and cis 1,4-polybutadiene rubber which contains reinforcement as carbon black, starch/plasticizer composite and aggregates of participated silica together with a coupling agent. Said circumferential rubber tread is of a rubber composition comprised of at least one diene-based rubber together with carbon black reinforcement and is exclusive of starch and precipitated silica.
Abstract:
In tire tread formulations, blends of rubbers having low and high glass transition temperatures have significant advantages over blends made with rubbers having intermediate glass transition temperatures. However, blends of rubbers having low and high glass transition temperatures exhibit poor processability. This invention deals with improving the processability of tire tread formulations which are made by blending rubbers having both low and high glass transition temperatures that offer ultra low rolling resistance without sacrificing rolling resistance or tread wear characteristics. This invention more specifically discloses a tire tread rubber composition which is comprised of (a) about 60 phr to about 90 phr of a high cis-1,4-polybutadiene rubber, wherein the high cis-1,4-polybutadiene rubber has a glass transition temperature which is within the range of about −104° C. to about −80° C., (b) about 10 phr to about 40 phr of at least one additional rubbery polymer selected from the group consisting of polyisoprene rubber, polybutadiene rubber and styrene-isoprene-butadiene rubber, wherein the additional rubbery polymer has a glass transition temperature which is within the range of about −30° C. to about −10° C. isoprene-butadiene rubber, (c) about 20 phr to about 60 phr of carbon black, wherein the carbon black has a DBP absorption value of at least 140 cm3/100 grams and wherein the carbon black has a CTAB adsorption area which is within the range of about 60 to about 90.
Abstract:
The present invention relates to a pneumatic tire having a tread containing from 50 to 100 phr of a dried rubber derived from a blend of a styrene butadiene latex and an acrylonitrile butadiene latex.
Abstract:
This invention is based upon the discovery that cyclized polyisoprene polymers can be incorporated into tire tread compounds to improve traction, treadwear, and resistance to tear. It is further based upon the discovery that cyclized polyisoprene polymers can be blended with halobutyl rubber and/or natural rubber and can be utilized in tire innerliner formulations. The present invention more specifically discloses a tire which is comprised of a generally toroidal-shaped carcass with an outer circumferential tread, two spaced beads, at least one ply extending from bead to bead and sidewalls extending radially from and connecting said tread to said beads, wherein said tread is adapted to be ground-contacting, and wherein said tread is comprised of a sulfur cured rubber composition which is comprised of about 5 phr to about 50 phr of cyclized polyisoprene and about 50 phr to about 95 phr of at least one other rubbery polymer. The present invention further discloses a tire which is comprised of a generally toroidal-shaped carcass with an outer circumferential tread, two spaced beads, an innerliner, at least one ply extending from bead to bead and sidewalls extending radially from and connecting said tread to said beads, wherein said innerliner is comprised of a sulfur cured rubber composition which is comprised of about 5 phr to about 50 phr of cyclized polyisoprene and about 50 phr to about 95 phr of at least one other rubbery polymer selected from the group consisting of natural rubber and halobutyl rubber.
Abstract:
This invention relates to a tire tread compound that is easily processable which can be used to improve the treadwear, rolling resistance and traction characteristics of tires. The tire tread compounds of this invention are a blend of tin-coupled polybutadiene, high vinyl polybutadiene and natural rubber. This blend of low glass transition temperature rubber and high glass transition temperature rubber is surprisingly easy to process which makes the concept of this invention commercially feasible. Thus, the tire tread compounds of this invention can be utilized in making tires having greatly improved traction characteristics and treadwear without sacrificing rolling resistance. These improved properties may be due, in part, to better interaction and compatibility with carbon black and/or silica fillers. The polybutadiene in the blend can be asymmetrical tin-coupled to further improve the cold flow characteristics of the rubber blend. Asymmetrical tin coupling in general also leads to better processability and other beneficial properties. This invention more specifically discloses a tire tread rubber composition which is comprised of (1) from about 20 phr to about 60 phr of tin-coupled polybutadiene rubber, (2) from about 20 phr to about 60 phr of a rubber selected from the group consisting of natural rubber and synthetic polyisoprene and (3) from about 5 phr to about 40 phr of high vinyl polybutadiene rubber.
Abstract:
The present invention relates to a rubber composition containing substantial silica reinforcement and pneumatic tires having treads comprised of such rubber composition. The rubber composition comprises an elastomer, substantial silica reinforcement, optionally a minor amount of carbon black reinforcement, and a triblock copolymer of terminal hard styrene based segments and of internal diene based elastomer segments.