Abstract:
The capacitor in a semiconductor device includes a substrate, a lower electrode formed over the substrate, a diffusion barrier formed over the lower electrode, a plurality of agglomerates formed over the diffusion barrier, a dielectric layer formed over the surface of the agglomerates to form an uneven surface, and an upper electrode formed over the dielectric layer.
Abstract:
High quality dielectric layers may be achieved without introducing excessive impurities when a semiconductor device is manufactured by a method that includes forming a lower wire layer on a structure above a semiconductor substrate, forming a silicon rich oxide layer having a refractive index of 0.45-1.55 on the lower wire layer and the structure, implanting carbon and oxygen (e.g., CO2) into the silicon rich oxide (SRO) layer, and forming an organosilicate glass layer by heat-treating the implanted SRO layer.
Abstract:
A method of forming a pre-metal dielectric (PMD) layer is disclosed. In the method, after a nitride liner layer is formed on a substrate having a transistor, a USG layer is deposited thereon and then planarized. Next, ion implantation and annealing are performed for gettering, first in a gate region and then in a non-gate region of the USG layer. The USG layer is generally free from plasma damage and has a good gap-fill capability. Further, ion implantation and annealing after deposition of the USG layer may enhance a gap-fill capability, a gettering capability, and electrical properties of a transistor.
Abstract:
The present invention relates to a method of manufacturing a semiconductor device which may stably transfer an electrical signal by forming a plurality of via holes and contact holes to an underlying conductive layer. According to the present invention, even though a contact or via is electrically shorted, it is possible to stably transfer the electrical signal through the other contact hole(s) or via hole(s). The present method includes: forming a first conductive line on a semiconductor substrate; forming an insulating layer on the semiconductor substrate and the first conductive line; forming a plurality of via holes by selectively etching the insulating layer in order to expose the first conductive line; forming a metal barrier on top of the insulating layer and in the via holes; and forming a plug by depositing a conductive layer sufficiently to fill the via holes, and then planarizing the conductive layer to coplanarity with the insulating layer.
Abstract:
Metal interconnection lines of semiconductor devices and methods of forming the same are disclosed. Improved reliability is achieved in a disclosed metal line of a semiconductor device by preventing metal layers from eroding and preventing metal lines from being destroyed due to electro-migration (EM) and stress-migration (SM). An illustrated metal interconnection line includes: a semiconductor substrate; a metal pattern on the substrate; a glue pattern under the metal pattern; an anti-reflection pattern on the metal pattern; and dummy patterns surrounding side walls of the metal pattern.
Abstract:
The present invention relates to vinyl-phenyl monomers and polymers prepared therefrom. More particularly, the present invention is to provide the vinyl-phenyl monomers expressed by formula (1) which are capable of various polymerization such as radical polymerization, cation polymerization, anion polymerization and metallocene catalyzed polymerization due to resonance effect of phenyl group and changing characteristics variously and thus, suitable in the synthesis of general-purpose polymers which can be used in photo-functional materials by forming a complex with a metal component having an optical characteristic.
Abstract:
Provided are a vinyl-biphenylpyridine monomer and a polymer thereof. More particularly, the present invention provides a vinyl-biphenylpyridine monomer having a side chain of pyridine or phenylpyridine as a functional group, a homopolymer of which molecular weight and molecular weight distribution are controlled using the monomer, and a block copolymer of which molecular structure and molecular weight are controlled to facilitate synthesis of an organic metal complex. Accordingly, the present invention provides a vinyl-biphenylpyridine monomer and a polymer thereof which are effectively used as nano and optical functional materials.
Abstract:
Semiconductor devices having a copper line layer and methods for manufacturing the same are disclosed. An illustrated semiconductor device comprises a damascene insulating layer having a contact hole, a barrier metal layer including a first ruthenium layer, a ruthenium oxide layer and a second ruthenium layer, a seed copper layer formed on the barrier metal layer, and a copper line layer made of a Cu—Ag—Au solid solution. A disclosed example method of manufacturing a semiconductor device reduces and/or prevents contact characteristic degradation of the barrier metal layer with the silicon substrate or the damascene insulating layer. In addition, by forming the copper line layer made of the Cu—Ag—Au solid solution, long term device reliability may be improved.
Abstract:
A sulfonated poly(arylene ether) copolymer that has a crosslinking structure in a chain of a polymer, a sulfonated poly(arylene ether) copolymer that has a crosslinking structure in and at an end of a chain of a polymer, and a polymer electrolyte film that is formed by using them are disclosed. According to the polycondensation reaction of the sulfonated dihydroxy monomer (HO—SAr1-OH), the none sulfonated dihydroxy monomer (HO—Ar—OH), the crosslinkable dihalide monomer (X—CM-X) and the none sulfonated dihalide monomer (X—Ar—X), the poly(arylene ether) copolymer in which the sulfonic acid is included is synthesized. The formed poly(arylene ether) copolymer has the crosslinkable structure in the chain of the polymer. In addition, by carrying out the polycondensation reaction in respects to the crosslinkable monohydroxy monomer or the crosslinkable monohalide monomer, the crosslinking can be formed at the end of the polymer. Through this, the thermal stability, the mechanical stability, the chemical stability, the film formation ability and the like is the same as or better than those of the Nafion film that is currently commercialized and is used as the polymer electrolyte film, and the proton conductivity and the cell performance are excessively improved. In addition, even though it is exposed to the moisture over a long period of time, since there is no change in the property of the electrolyte film, the dimensional stability is high.
Abstract:
A P-type polysilicon layer having a stable and desired resistivity is formed by alternately depositing a plurality of silicon atom layers and a plurality of group IIIA element atom layers on a semiconductor substrate by atomic layer deposition, and thereafter forming a P-type polysilicon layer by thermally diffusing the plurality of group IIIA element atom layers into the plurality of silicon atom layers. The plurality of group IIIA element atom layers may comprise Al, Ga, In, and/or Tl.