Abstract:
A method and apparatus for forming low-k dielectric layers that include air gaps is provided. In one embodiment, a method of processing a substrate is provided. The method comprises disposing a substrate within a processing region, reacting an organosilicon compound, with an oxidizing gas, and a porogen providing precursor in the presence of a plasma to deposit a porogen containing low-k dielectric layer comprising silicon, oxygen, and carbon on the substrate, depositing a porous dielectric capping layer comprising silicon, oxygen and carbon on the porogen containing low-k dielectric layer, and ultraviolet (UV) curing the porogen containing low-k dielectric layer and the porous dielectric capping layer to remove at least a portion of the porogen from the porogen containing low-k dielectric layer through the porous dielectric capping layer to convert the porogen containing low-k dielectric layer to a porous low-k dielectric layer having air gaps.
Abstract:
The present invention discloses an encoding method and device for Low Density Generator Matrix Codes (LDGC). Wherein, the method comprises: construct an LDGC mother code set using a plurality of LDGC with code rate R0 and different code lengths, wherein the LDGC mother code set has a uniform base matrix Gbuniform={(gi, jb)uniform}kb×nb; obtain length L of an intermediate variable according to a relationship between length K of an information bit sequence to be encoded in the LDGC mother code set and length L of the intermediate variable; obtain an expanding factor z for processing the base matrix using the length of the intermediate variable and the number of rows in the base matrix; process the base matrix using the expanding factor to obtain a binary generator matrix Gtmp, the front L rows and front L columns of which compose a triangular matrix; modify the binary generator matrix to obtain a modified binary generator matrix; take a matrix Gldgc composed of L rows and the front N+L−K columns of the modified binary generator matrix as a generator matrix of the information bit sequence to encode the information bit sequence.
Abstract:
An encoding method, encoding device, decoding method and decoding device for low density generator matrix codes (LDGC) are disclosed. Wherein, the encoding method comprises: construct an LDGC mother code set using P LDGC with code rate R0 and different code lengths, wherein the LDGC mother code set has a uniform basic matrix Gbuniform wherein, R 0 = k b n b , kb denotes the number of rows and nb denotes the number of columns in the basic matrix; obtain length L of an intermediate variant according to length K of an information bit sequence to be encoded in the LDGC mother code set; modify and expand the basic matrix to obtain a generator matrix Gldgc using the length L of the intermediate variant and the number kb of rows in the basic matrix; and encode the information bit sequence to be encoded using a matrix Gldgc (1:L,1:N+L−K) composed of L rows and the front N+L−K columns of the generator matrix, wherein N denotes the length of the encoded information.
Abstract:
An implantable electrode array includes an elongated carrier (20) and a plurality of electrodes mounted within the carrier. A actuator adjusts the curvature of the carrier and can be controlled by varying an electric potential applied to the actuator. The actuator is based on an electrochemical cells and may be a conducting polymer based actuator.
Abstract:
The present invention discloses a spring supported lower clamper for direct tensile test, comprising a lower connection member, a lower end cap for holding a sample, a lower chain for connecting the lower connection member with the lower end cap, and spring-type supporting means for supporting a broken-apart lower part of the sample formed during the tensile test and the lower end cap. During the tensile test, the sample, the lower end cap and the lower chain are supported by the spring-type supporting means. Thus the sample can be prevented from being broken abruptly when a tensile force in the sample reaches its maximum level, and the mechanical behavior after the maximum tensile force is reached can be measured.
Abstract:
A method for estimating one or more parameters of a ultra wideband signal and a receiver system for receiving ultra wideband signals is provided. The method for estimating one or more parameters of a signal in an ultra wide band system including estimating the parameter(s) for a first signal element in a received signal then removing this signal element from the signal to obtain a modified signal. The parameter(s) for a number of further signal elements are then estimated and these elements are removed from the modified signal to form a refined signal. The parameter(s) for the first signal element are re-estimated to re-define the first signal element based on the refined signal minus the signal element having the greatest amplitude. The parameter(s) for the signal element having the greatest amplitude are re-estimated to re-define this signal element. The steps are repeated to generate a refined estimate of the parameter(s) for the first signal element. There is also disclosed a receiver for performing the above steps.
Abstract:
A composition for reducing dentinal hypersensitivity and remineralizing exposed dentinal surface and open dentinal tubules, comprising a non-aqueous carrier and a desensitizing amount of a desensitizing/remineralizing agent which consists essentially of a water soluble calcium salt and an incompatible ingredient which would otherwise react with the calcium salt. Upon contact with saliva when applied to an oral cavity, the desensitizing/remineralizing is then formed in situ by the reaction between the calcium salt and the incompatible ingredient, thereby remineralizing exposed dentinal surface and open dentinal tubules.
Abstract:
A compiler with power and/or energy optimization, a complementary runtime manager, and system having the compiler and/or the runtime manager are described herein.
Abstract:
There is provided a system for predicting the characteristic frequency of each electrode of an implanted cochlear electrode array from electrode position data contained in an image of the implanted cochlea. There is also provided a system for setting the frequency range to electrode map of a cochlear prosthesis.