Abstract:
Disclosed are an electrophotographic image forming apparatus including a detachable development cartridge having arranged therein a photoconductive drum and a developing roller for forming a toner image through a development nip formed between the photoconductive drum and the developing roller. The development cartridge may include a development nip control member that can switch between a first position, in which the development nip control member causes the photoconductive drum to be separated from the developing roller, and a second position, in which the development nip control member causes the photoconductive drum to be in a pressing contact with the developing roller so as to form therebetween the development nip. The development cartridge may be mounted in the main body of the electrophotographic image forming apparatus with its development nip control member being in the first position, separating the photoconductive member from the developing roller. The electrophotographic image forming apparatus may be packaged for distribution with the development cartridge received in the main body thereof where the photoconductive drum and the developing roller are no in contact with each other in the development cartridge as packaged.
Abstract:
Disclosed herein is a method of fabricating a cliché capable of preventing a printing roller from touching a bottom surface of the cliché. The method of fabricating the cliché includes forming a mask thin film pattern having a multilayer structure and a photoresist pattern on a base substrate, forming a resistant reinforcement inducing layer to cover the photoresist pattern, thereby transforming the photoresist pattern into a resistant reinforced photoresist pattern, and forming groove patterns having different depths from each other by etching the base substrate using the resistant reinforced photoresist pattern and the mask thin film pattern having the multilayer structure as masks.
Abstract:
The present invention comprises a substrate, and at least one serial array having a plurality of light emitting cells connected in series on the substrate. Each of the light emitting cells comprises a lower semiconductor layer, an upper semiconductor layer, an active layer interposed between the lower and upper semiconductor layers, a lower electrode formed on the lower semiconductor layer exposed at a first corner of the substrate, an upper electrode layer formed on the upper semiconductor layer, and an upper electrode pad formed on the upper electrode layer exposed at a second corner of the substrate. The upper electrode pad and the lower electrode are respectively disposed at the corners diagonally opposite to each other, and are symmetric with respect to those of adjacent another of the light emitting cells.
Abstract:
An apparatus for fabricating a 3D scaffold includes: a plotter generating a microfiber structure; an electrospinning unit installed to be adjacent to the plotter along a first direction and spinning nanofiber in an internal space or on a surface of the microfiber structure to form a nanofiber web; a collection table reciprocating a lower portion of the plotter and that of the electrospinning unit along the first direction to allow the microfiber structure to be stacked thereon by the plotter and allow the nanofiber web to be formed thereon by the electrospinning unit; and a first guide rail allowing the collection table to be mounted thereon and guiding the collection table mounted thereon to reciprocate along the first direction.
Abstract:
AC LED according to the present invention comprises a substrate, and at least one serial array having a plurality of light emitting cells connected in series on the substrate. Each of the light emitting cells comprises a lower semiconductor layer consisting of a first conductive compound semiconductor layer formed on top of the substrate, an upper semiconductor layer consisting of a second conductive compound semiconductor layer formed on top of the lower semiconductor layer, an active layer interposed between the lower and upper semiconductor layers, a lower electrode formed on the lower semiconductor layer exposed at a first corner of the substrate, an upper electrode layer formed on the upper semiconductor layer, and an upper electrode pad formed on the upper electrode layer exposed at a second corner of the substrate. The upper electrode pad and the lower electrode are respectively disposed at the corners diagonally opposite to each other, and the respective light emitting cells are arranged so that the upper electrode pad and the lower electrode of one of the light emitting cells are symmetric with respect to those of adjacent another of the light emitting cells.
Abstract:
A method of preparing a toner using a micro-suspension particle, includes preparing a mixture by mixing a resin having acidic groups, a master batch of coloring pigment, and at least one additive with an organic solvent, and then neutralizing the acid groups of the resin with a base; forming a micro-suspension by adding the prepared mixture to a dispersion medium; and forming a toner composition by removing the organic solvent from the prepared micro-suspension. Therefore, the method of preparing a toner using the disclosed micro-suspension particle and a toner prepared using the same can save manufacturing costs, and can improve charging ability and cleaning properties of the toner.
Abstract:
Disclosed is an AC light emitting device having photonic crystal structures and a method of fabricating the same. The light emitting device includes a plurality of light emitting cells and metallic wirings electrically connecting the light emitting cells with one another. Further, each of the light emitting cells includes a first conductive type semiconductor layer, a second conductive type semiconductor layer disposed on one region of the first conductive type semiconductor layer, and an active layer interposed between the first and second conductive type semiconductor layers. In addition, a photonic crystal structure is formed in the second conductive type semiconductor layer. The photonic crystal structure prevents light emitted from the active layer from laterally propagating by means of a periodic array, such that light extraction efficiency of the light emitting device can be improved. Furthermore, the metallic wirings electrically connect a plurality of light emitting cells with one another such that an AC light emitting device can be provided.
Abstract:
Provided is a ultra-wideband dual linear polarized wave waveguide antenna for communication having a wideband matching structure in which the inner peripheral surface of the first polarized wave filtering unit or the second polarized wave filtering unit, which filters a first polarized wave or a second polarized wave entering the dual linear polarized wave waveguide antenna and orthogonal to each other, are tapered such that a diameter of the inner peripheral surface becomes smaller, and having an extended path so as to adjust the first polarized wave and the second polarized wave so that they are in-phase. By doing so, the ultra-wideband dual linear polarized wave waveguide antenna is capable of both receiving and transmitting and thus can be used for communication, and can adjust skew angles without being mechanically rotated.
Abstract:
Disclosed herein is a method of fabricating a cliché capable of preventing a printing roller from touching a bottom surface of the cliché. The method of fabricating the cliché includes forming a mask thin film pattern having a multilayer structure and a photoresist pattern on a base substrate, forming a resistant reinforcement inducing layer to cover the photoresist pattern, thereby transforming the photoresist pattern into a resistant reinforced photoresist pattern, and forming groove patterns having different depths from each other by etching the base substrate using the resistant reinforced photoresist pattern and the mask thin film pattern having the multilayer structure as masks.
Abstract:
In one form, an airbag is provided including an airbag main body formed into a pouch; an inner restricting cloth that comprises a tearable tear line and wraps and restricts the airbag main body that is in a first folded state, folded to achieve bundling toward a predetermined direction, in the bundled direction; and an outer restricting cloth that comprises a tearable tear line and wraps and restricts the airbag main body that is in a second folded state, folded to achieve further bundling from the first folded state toward a direction orthogonal to the predetermined direction, in the bundled direction further on the outside than the inner restricting cloth.