Abstract:
An apparatus and method for controlling an input termination of a semiconductor memory device that easily detect and analyze defects, functions and reliability of the device by controlling operations of the input termination. The apparatus comprises an input termination circuit for matching an impedance of a transmission line, a control circuit for processing test commands and outputting control signals in response to said processing, and a switching circuit for selectively turning on/off the input termination circuit in response to the control signals output from the control circuit.
Abstract:
A semiconductor memory device effectively capable of removing skew between data output of a data output circuit and an echo clock of an echo clock generator is provided. The semiconductor memory device comprises a delay circuit comprising a plurality of delay paths for delaying the data enable clock by different time, a test controller for generating a mode select signal and a delay path test signal in response to a test code signal, and a delay signal selection circuit comprising a plurality of fuses for producing a default delay path select signal based on a programmed state of the plurality of fuses, and a multiplexer, responsive to the mode select signal, for selectively providing the default delay path select signal or the delay path test signal to the delay circuit.
Abstract:
Disclosed are system and method for filtration which can minimize the contamination of the filtering membrane through a pretreatment and perform the pretreatment and the filtration with a filtering membrane in a single filtering unit so that any need for separate and additional space and facility for the pretreatment can be obviated. The system for filtration of the present invention comprises a fine bubble supplier for providing fine bubbles into the feed water. The pretreatment is performed by supplying the feed water to be treated into the filtering unit through a dynamic filtration layer which is formed in the filtering unit as the fine bubbles rise.
Abstract:
The present invention relates to a preparation method of a tungsten carbide sintered body for a friction stir welding tool used in a friction stir welding tool of a high melting point material such as steel, titanium and the like or a dissimilar material such as aluminum, magnesium-steel, titanium and the like using pulsed current activation through a discharge plasma sintering apparatus. The preparation method comprises the following steps: filling a tungsten carbide (WC) powder in a mold made of a graphite material; mounting the mold filled with tungsten carbide powder in a chamber of a discharge plasma sintering apparatus; making a vacuum inside of the chamber; molding the tungsten carbide powder while maintaining a constant pressure inside the mold and increasing the temperature according to a set heat increase pattern until the temperature reaches a final target temperature; and cooling the inside of the chamber while maintaining the pressure pressurized in the mold after the molding step. According to the preparation method of a tungsten carbide sintered body for a friction stir welding tool, it is possible to obtain a high relative density of 99.5% or higher, and to prepare a uniform sintered body having a homogeneous tissue with little particle growth, high toughness, high abrasion resistance and high strength within a short time by a single process when preparing a tungsten carbide sintered body appropriate for a friction stir welding tool by using pulsed current activation through a discharge plasma sintering apparatus. In addition, since a sintered body is prepared with only a tungsten carbide single material, excluding a sintering additive such as cobalt, a preparation method is simplified, preparation costs are reduced, and toughness, abrasion resistance and strength are superior compared with a sintered body containing cobalt, a sintering additive.
Abstract:
At least one embodiment includes a non-volatile memory cell array, a write buffer configured to store data being written into the non-volatile memory cell array, and a write unit configured to write data into the non-volatile memory cell array. The write unit is configured to perform writing of data such that each data will have reached a stable storage state in the non-volatile memory prior to being over-written in the write buffer.
Abstract:
A method of operating a phase change random access memory (PRAM) device includes performing a program operation to store data in selected PRAM cells of the device, wherein the program operation comprises a plurality of sequential program loops. The method further comprises suspending the program operation in the middle of the program operation, and after suspending the program operation, resuming the program operation in response to a resume command.
Abstract:
A memory device includes a memory cell array including a plurality of memory blocks, each memory block including a plurality of memory cells, a plurality of word lines coupled to rows of the plurality of memory cells, a plurality of bit lines coupled to columns of the plurality of memory cells, and a control unit controlling an erase operation so that erase data is simultaneously written in the plurality of memory cells corresponding to an erase unit. A first erase mode may include a first erase unit and a first erase data pattern. A second erase mode may include a second erase unit and a second erase pattern. At least one of the first and second erase units and the first and second erase data patterns are different.
Abstract:
In one embodiment, the semiconductor device, includes a non-volatile memory cell array, and a control unit configured to generate a mode signal indicating if a flash mode has been enabled. A write circuit is configured to write in the non-volatile memory cell array based on the mode signal such that the write circuit disables erasing the non-volatile memory cell array if the flash mode has not been enabled and instructions to erase one or more cells of the non-volatile memory cell array is received.
Abstract:
A non-volatile memory device using a variable resistive element includes a memory cell array having a plurality of non-volatile memory cells, a first voltage generator generating a first voltage, a voltage pad receiving an external voltage that has a level higher than the first voltage, a sense amplifier supplied with the first voltage and reading data from the non-volatile memory cells selected from the memory cell array, and a write driver supplied with the external voltage and writing data to the non-volatile memory cells selected from the memory cell array.
Abstract:
A nonvolatile memory device comprising: a plurality of memory banks, each of which operates independently and includes a plurality of resistance memory cells, each cell including a variable resistive element having a resistance varying depending on stored data; a plurality of global bit lines, each global bit line being shared by the plurality of memory banks; a temperature compensation circuit including one or more reference cells; and a data read circuit which is electrically connected to the plurality of global bit lines and performs a read operation by supplying at least one of the resistance memory cells with a current varying according to resistances of the reference cells.