Abstract:
The coating film-forming composition is a solution of pH 6 to 9 and includes an aromatic compound having an amino group and an aromatic ring in one molecule, a polybasic acid having two or more carboxy groups, and a halide ion. The content of polybasic acid in the coating film-forming composition is 0.05 to 10 times the content of aromatic compound, and the halide ion concentration is 5 to 600 mM. A coating film with excellent adhesion to a resin can be formed on a surface of a metal member by bringing the coating film-forming composition into contact with the surface of the metal member.
Abstract:
Disclosed are: a microetching agent which can form roughened shapes less affected by differences in the crystallinity of the copper and with which roughened shape excellent in terms of adhesiveness to resins, etc. can be formed on either electrolytic copper or rolled copper; and a method for producing a wiring board which includes a step of roughening a copper surface using the microetching agent. In the present invention, the microetching agent for copper is an acidic aqueous solution containing an inorganic acid, a cupric ion source, a halide ion source, and a polymer. The polymer has a functional group containing a nitrogen atom. It is preferable that the microetching agent contain a sulfate ion source.
Abstract:
The invention relates to a washing solution for a tin plating film after electroless tin plating and before water washing. The invention also relates to a method for forming a tin plating film, the method includes a step of washing step using the washing solution. The washing solution according to the present invention is an acidic aqueous solution containing an acid, a complexing agent, a stabilizer and a chloride ion. The washing solution has a chloride ion concentration of 2 wt % or more, and a tin concentration of 0.5 wt % or less. The washing solution according to the present invention has good washing property for a tin plating film surface, and allows a tin plating film to easily maintain its properties. In addition the washing solution causes little influence on a tin plating film surface even when continuously used and is excellent in temporal stability.
Abstract:
Disclosed is an etching agent for steel. The etching agent is an acidic aqueous solution including ferrous ions, ferric ions, and an acetylene group-containing water-soluble compound. The concentration of ferrous ion A % by weight and the concentration of ferric ion B % by weight in the etching agent is preferably from 0.1 to 2.5. Also disclosed is a replenishing liquid that is added to the etching agent when the etching agent is continuously or repeatedly used. The replenishing liquid is an aqueous solution including an acetylene group-containing water-soluble compound.
Abstract:
Disclosed is a microetching solution, a replenishment solution added to said microetching solution and a method for production of a wiring board using said microetching solution. The microetching solution for copper consists of an aqueous solution containing a cupric ion, an organic acid, a halide ion, a polymer and a nonionic surfactant. The polymer is a water-soluble polymer including a polyamine chain and/or a cationic group and having a weight average molecular weight of 1000 or more. In the microetching solution of the present invention, a value of A/B is 2000 to 9000 and a value of A/D is 500 to 9000, where a concentration of the halide ion is A % by weight, a concentration of the polymer is B % by weight and a concentration of the nonionic surfactant is D % by weight. Using this microetching solution, adhesion to a resin or the like can be uniformly maintained even with a low etching amount.
Abstract:
A surface of copper is brought into contact with an aqueous solution for forming a bonding layer for bonding resin comprising: (a) at least one type of acid selected from inorganic acid and organic acid; (b) tin salt or tin oxide; (c) salt or oxide of at least one type of metal selected from the group consisting of: silver, zinc, aluminum, titanium, bismuth, chromium, iron, cobalt, nickel, palladium, gold, and platinum; (d) a reaction accelerator; and (e) a diffusive retaining solvent, so that an alloy layer of tin and the at least one type of metal selected in (c) is formed on the surface of the copper. Subsequently, a portion of the alloy layer of the tin and the at least one type of metal selected in (c) other than a portion of the alloy layer that is a layer in which the copper, the tin, and the at least one type of metal selected in (c) are diffused is removed, so that a bonding layer for bonding resin containing an alloy of copper, tin, and the at least one type of metal selected in (c) is formed on a surface of copper. Thus, adhesion between copper and resin can be enhanced. The present invention provides the above-mentioned bonding layer forming solution, a method of producing a copper-to-resin bonding layer using the solution, and a layered product obtained thereby.
Abstract:
A regenerating method of a removal liquid including: removing a nickel-chromium-containing layer from a substrate using the removal liquid at a time of manufacturing a printed circuit board by a semi-additive method, the substrate including the nickel-chromium-containing layer and a copper-containing layer; collecting the removal liquid that has been used; and contacting the collected removal liquid in collecting the removal liquid with a chelate resin, wherein the chelate resin includes a functional group represented by a following formula (1):
where a plurality of Rs are identical divalent hydrocarbon groups having 1 to 5 carbons, and a portion of hydrogen atoms in the hydrocarbon groups are substituted with halogen atoms or not substituted with a halogen atom.
Abstract:
The coating film-forming composition includes an aromatic compound having an amino group and an aromatic ring in one molecule, and thio compound (sulfur oxoacids having a pKa of −1.9 or less and salts thereof are excluded). pH of the coating film-forming composition is 4 to 10. The thio compound is preferably one that ionized to form anions in a solution, and thiosulfate and thiocyanate are especially preferable. By bringing the coating film-forming composition into contact with the surface of a metal member, a coating film is formed on the surface of the metal member, so that a surface-treated metal member can be obtained.
Abstract:
An object of the present invention is to provide: an etching liquid which is capable of etching titanium selectively in the presence of copper, and is further low in toxicity and excellent in storage stability; and an etching method using this etching liquid. The etching liquid of the present invention which is a liquid includes at least one acid selected from the group consisting of sulfuric acid, hydrochloric acid, and trichloroacetic acid, and at least one organic sulfur compound selected from the group consisting of a thioketone compound and a thioether compound, and makes it possible to etch titanium selectively in the presence of copper.
Abstract:
Disclosed is a microetching solution for copper, a replenishment solution therefor and a method for production of a wiring board. The microetching solution of the present invention consists of an aqueous solution containing a cupric ion, an organic acid, a halide ion, an amino group-containing compound having a molecular weight of 17 to 400 and a polymer. The polymer is a water-soluble polymer including a polyamine chain and/or a cationic group and having a weight average molecular weight of 1000 or more. When a concentration of the amino group-containing compound is A % by weight and a concentration of the polymer is B % by weight, a value of A/B of the microetching solution of the present invention is 50 to 6000. According to the present invention, an adhesion between copper and a resin or the like may be maintained even with a low etching amount.