Abstract:
A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process. The sintering inhibiting material (22) has a morphology adapted to improve the functionality of the sintering inhibiting material (22), characterized as continuous, nodule, rivulet, grain, crack, flake and combinations thereof and being disposed within at least some of the vertical and horizontal gaps.
Abstract:
A device (10) is made, having a ceramic thermal barrier coating layer (16) characterized by a microstructure having gaps (18) with a sintering inhibiting material (22) disposed on the columns (20) within the gaps (18). The sintering resistant material (22) is stable over the range of operating temperatures of the device (10), is not soluble with the underlying ceramic layer (16) and is applied by a process that is not an electron beam physical vapor deposition process.
Abstract:
A thermal barrier coating (18) having a less dense bottom layer (20) and a more dense top layer (22) with a plurality of segmentation gaps (28) formed in the top layer to provide thermal strain relief. The top layer may be at least 95% of the theoretical density in order to minimize the densification effect during long term operation, and the bottom layer may be no more than 95% of the theoretical density in order to optimize the thermal insulation and strain tolerance properties of the coating. The gaps are formed by a laser engraving process controlled to limit the size of the surface opening to no more than 50 microns in order to limit the aerodynamic impact of the gaps for combustion turbine applications. The laser engraving process is also controlled to form a generally U-shaped bottom geometry (54) in the gaps in order to minimize the stress concentration effect.
Abstract:
A method of forming a cooling feature (28) on a surface (14) of a substrate (12) to protect the substrate from a high temperature environment. The cooling feature is formed by first depositing a layer of a masking material (16) such as epoxy resin on the surface of the substrate. A pattern of voids (18) is then cut into the masking material by a laser engraving process which exposes portions of the substrate surface. A plurality of supports (20) are then formed by electroplating a support material onto the exposed portions of the substrate surface. A layer of material is then electroplated onto the supports and over the masking material to form a skin that interconnects the supports. Finally, the remaining portions of the masking material are removed to form a plurality of cooling channels (26) defined by the supports, skin and substrate surface. An additional layer of material (42) may be deposited onto a top surface (50) of the cooling feature to provide additional thermal and/or mechanical protection.
Abstract:
A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base columnar thermal barrier coating (20) on the alloy surface, where a heat resistant ceramic oxide sheath material (32′ or 34′) covers the columns (28), and the sheath material is the reaction product of a precursor ceramic oxide sheath material and the base thermal barrier coating material.
Abstract:
A circuit assembly (34) resistant to high-temperature and high g centrifugal force is disclosed. A printed circuit board (42) is first fabricated from alumina and has conductive traces of said circuit formed thereon by the use of a thick film gold paste. Active and passive components of the circuit assembly are attached to the printed circuit board by means of gold powder diffused under high temperature. Gold wire is used for bonding between the circuit traces and the active components in order to complete the circuit assembly (34). Also, a method for manufacturing a circuit assembly resistant to elevated temperature is disclosed.
Abstract:
In a telemetry system for use in an engine, a circuit structure (34) affixed to a moving part (20) of the engine is disposed for amplifying information sensed about a condition of the part and transmitting the sensed information to a receiver external to the engine. The circuit structure is adapted for the high temperature environment of the engine and includes a differential amplifier (102, 111) having an input for receiving a signal from a sensor (101, 110) disposed on the part. A voltage controlled oscillator (104, 115) with an input coupled to the output of the amplifier produces an oscillatory signal having a frequency representative of the sensed condition. A buffer (105, 116) with an input coupled to the output of the oscillator buffers the oscillatory signal, which is then coupled to an antenna (26) for transmitting the information to the receiver.
Abstract:
The present invention relates to an aqueous polyurethane coating composition comprising: 1) 1 to 99 wt. % of the reaction product of: a) a polyol component, which is soluble or dispersible in water and is the reaction product of a polyisocyanate component containing 50 to 100 wt. % of an aliphatic diisocyanate, a polyol component containing one or more polyether polyols and having an OH number of 25 to 350 mg KOH/g solids and an isocyanate-reactive component containing at least one group capable of salt formation; and b) polyisocyanate component, which is soluble or dispersible in water, has blocked isocyanate groups and is the reaction product of one or more polyisocyanates having an isocyanurate group content of 0 to 30 wt. %, a reversible, monofunctional blocking agent for isocyanate groups, a nonionic hydrophilic component and a stabilizing component which has 1 to 2 hydrazide groups and a molecular weight of 74 to 300 g/mol; and 2) 1 to 99 wt. % of an aqueous polyurethane dispersion prepared from at least one polycarbonate polyol, wherein the total wt. % of components 1) and 2) add up to 100%.
Abstract:
A layer system is disclosed. The layer system includes a substrate and a ceramic outer layer. The ceramic outer ceramic layer is produced from a ceramic powder. The ceramic powder include a phrochlore phase according to the empirical formula AxByOz with x, y≈2, z≈7 and a secondary oxide CrOs with r, s>0.
Abstract:
There is described a ceramic powder, ceramic layer and layer system having gadolinium/mixed crystal pyrochlore phases and oxides. Besides a good thermal insulation property, thermal insulation layer systems must also have a long lifetime of the thermal insulation layer. The layer system according to the invention has an outer ceramic layer, which comprises a mixed crystal of gadolinium zirconate and gadolinium hafnate.