Abstract:
A method is used to manufacture a surgical instrument. The surgical instrument includes a catheter and an end effector extending distally from the catheter. The method includes forming at least one electrode, sensor, or thermocouple onto the catheter or the end effector of the surgical instrument by etching or vapor depositing a three-dimensional structure onto a non-conductive material that is layered over a super elastic material.
Abstract:
A method is described including passing a solution having a biodegradable polymer, a solvent and a treatment agent through an electrocharged nozzle to form particles encapsulating the treatment agent. The particles emitted from the electrocharged nozzle may be exposed to a charge opposite that of the nozzle. The particles may be deposited in a collection assembly comprising a liquid phase. A further method including combining a biodegradable polymer, a solvent and a treatment agent to form a solution, electrodepositing the solution in a particle form wherein the particles encapsulate the treatment agent in a collection assembly comprising a liquid phase and mixing the particles with a bioerodable material capable of forming a gel is described. An apparatus having an electrocharged nozzle, a grounded electrode having an opposite charge to that of the nozzle and a collection assembly comprising a liquid phase is further disclosed.
Abstract:
Apparatus and methods are disclosed for supporting ischemic tissue of the heart using scaffolds that may be placed within the heart percutaneously. A scaffold assembly may include a layer of biocompatible material detachably secured to a placement rod, such that the placement rod may be used to urge the layer of biocompatible material through a catheter to adjacent an area of ischemic tissue. Anchors may secure the layer of material to the myocardium. Multiple layers of biocompatible material may be placed in the ventricle separately to form the scaffold. In some embodiments, a scaffold is formed or reinforced by injecting a polymer, such as a visco-elastic foam, around an inflatable member inflated within a ventricle.
Abstract:
A needle catheter configured for injecting an agent into a wall of a patient's body cavity, which directs a needle from the distal tip of the catheter into the wall of the body cavity at an angle relative to the axis of the shaft. The resulting angled injection pathway improves the retention of the agent in the body cavity wall, while keeping a distal section of the catheter substantially perpendicular to the body cavity wall for optimal push against the tissue at the injection site.
Abstract:
Electrospray systems and modified electrospray systems for the fabrication of core-shell particles for controlled-release and/or sustained-release treatment and delivery are herein disclosed. The electrospray system may include between one and a plurality of co-axially situated tubes. Each tube may be electrically connected to a power supply wherein a voltage may be applied thereto. Core-shell particles may be collected on a collection target, which may be a wet or dry collector, and electrically connected to the power supply. Core-shell particles and methods of manufacture are also disclosed. The precursors of the core-shell particles may be polymer- or biomacromolecule-based solutions and may include at least one treatment agent incorporated therein. The number of “core” particle(s) within the “shell” may vary and may provide different treatment agent release profiles depending on the material and/or chemical characteristics of the polymer and/or biomacromolecule used. Methods of treating a condition are also disclosed. A treatment may include delivery of a plurality of core-shell particles which include a treatment agent to a treatment site. Delivery may be performed by a surgical procedure or by a non-invasive procedure such as catheter delivery.
Abstract:
A method is described including passing a solution having a biodegradable polymer, a solvent and a treatment agent through an electrocharged nozzle to form particles encapsulating the treatment agent. The particles emitted from the electrocharged nozzle may be exposed to a charge opposite that of the nozzle. The particles may be deposited in a collection assembly comprising a liquid phase. A further method including combining a biodegradable polymer, a solvent and a treatment agent to form a solution, electrodepositing the solution in a particle form wherein the particles encapsulate the treatment agent in a collection assembly comprising a liquid phase and mixing the particles with a bioerodable material capable of forming a gel is described. An apparatus having an electrocharged nozzle, a grounded electrode having an opposite charge to that of the nozzle and a collection assembly comprising a liquid phase is further disclosed.