Abstract:
An aqueous dispersion containing a graft copolymer satisfying (a) to (e) and water: (a) a graft rate is 1 to 150% by mass, (b) a weight average molecular weight is 500 to 400000, (c) a molecular weight distribution is 1.5 to 4, (d) a main chain containing a monomer unit having a hydrophilic group and (e) an α-olefin homopolymerization or α-olefin/ethylene copolymerization side chain, wherein a mesopentad ratio [mmmm] of the polymerization chain is 30 to 80 mole %.
Abstract:
A terminally unsaturated polyolefin satisfying the following (1) to (4): (1) the mesopentad fraction [mmmm] of propylene chain unit or butene-1 chain unit is 20 to 80 mol %; (2) the number of terminal vinylidene groups per molecule is 1.3 to 2.5; (3) the weight-average molecular weight Mw is 500 to 100,000; and (4) the molecular weight distribution Mw/Mn is 1.1 to 2.6.
Abstract:
Provided is a resin composition containing a resin component prepared by blending a graft copolymer with an engineering plastic, wherein the above graft copolymer is a graft copolymer satisfying (a) to (e) shown below: (a) a graft rate is 1 to 150% by mass, (b) a weight average molecular weight measured by GPC is 500 to 400000, (c) a molecular weight distribution (Mw/Mn) is 1.5 to 4, (d) a main chain is a polymerization chain containing 1 to 100% by mass of a monomer unit having a functional group interacting with the engineering plastic and (e) a side chain is a homopolymerization chain of a single kind selected from α-olefins having 3 to 28 carbon atoms or a copolymerization chain of two or more kinds selected therefrom or a copolymerization chain comprising an α-olefin unit having 3 to 28 carbon atoms and an ethylene unit which accounts for 50% by mass or less, and a mesopentad ratio [mmmm] of the polymerization chain is 30 to 80 mole %.
Abstract:
A process for producing a polyolefin-based resin composition comprises, in the first polymerization stage, polymerizing an α-olefin having 4 to 20 carbon atoms, a styrene or a cyclic olefin in the presence of a specific catalyst and, in the second polymerization stage, copolymerizing the obtained polymer with an α-olefin having 2 to 20 carbon atoms, a styrene or a cyclic olefin in the presence of a polyene. A polypropylene composition has a branching parameter a and a branching index g in specific ranges. The curve showing the change in viscosity under elongation with time, the degradation parameter D or the content of a high molecular weight component is specified. The polyolefin-based resin composition exhibits excellent uniformity and improved workability in melting due to improved tension in melted condition. The polypropylene composition exhibits excellent melting elasticity and secondary workability and provides foamed molded articles, sheets and blow molded articles.
Abstract:
The invention relates to olefin branched macromonomers, olefin graft copolymers and olefin resin compositions having the advantage of good compatibility with polyolefin resins and good moldability and workability. The olefin branched macromonomer satisfies the following (a) and (b): (a) its weight-average molecular weight (Mw) measured through gel permeation chromatography (GPC) falls between 400 and 200000; (b) its vinyl content is at least 70 mol % of all the unsaturated groups in the macromonomer.
Abstract:
An ethylenic copolymer composition including an ethylenic copolymer having Mw/Mn of 1.5 to 4, Mw of 3,000 to 1,000,000, and a resin density of 0.85 to 0.95 g/cm3. The relationship between the half width at the half maximum [W/2] of the Gaussian distribution curve, and the average, n, of short-chain branches in the copolymer satisfies the equation, 0.704+0.147n=W/2=−0.055+0.577n. The ethylenic copolymer composition also includes an ethylenic copolymer having an Mw of 3,000 to 1,000,000 and a resin density of 0.85 to 0.95 g/cm3.
Abstract translation:包含Mw / Mn为1.5〜4,Mw为3,000〜1,000,000,树脂密度为0.85〜0.95g / cm 3的乙烯系共聚物的乙烯类共聚物组合物。 高分子分布曲线的半值宽度(W / 2)与共聚物中短链支链的平均值之间的关系满足下式:乙烯类共聚物组合物还包括具有 Mw为3,000至1,000,000,树脂密度为0.85至0.95g / cm 3。
Abstract:
Provided are an aluminium-oxy compound obtained through reaction of an organoaluminium compound with water, which is soluble in hydrocarbon solvents and in which the amount of the organoaluminium compound remaining is at most 10% by weight; a carrier comprising the aluminium-oxy compound and an inorganic compound; and a catalyst component for olefin polymerization comprising the carrier and a transition metal compound. The catalyst component for olefin polymer production comprises the aluminium-oxy compound and gives polyolefins with good polymer morphology.
Abstract:
Polyethylenes are disclosed herein which are derived from an ethylene monomer and in which any quaternary carbon atom is not present in a polymeric main chain; and the activation energy (Ea) of melt flow is in the range of 8 to 20 kcal/mol; as well as(1) a Huggins coefficient (k) and an intrinsic viscosity [.eta.] meet the relation of the equationk.gtoreq.0.2+0.0743.times.[.eta.];(2) a molar ratio [CH.sub.3 /CH.sub.2 ] of a methyl group to a methylene group is in a region of 0.005 to 0.1 and meets the equationTm.gtoreq.131-1340[CH.sub.3 /CH.sub.2 ];(3) an Mw and a die swell ratio (DR) meet the equationDR>0.5+0.125.times.log Mw; or(4) in the measurement of a loss elastic modulus, a .beta.-relaxation peak is present in the range of 0 to -100.degree. C.These polyethylenes are different from a usual HDPE, L-LDPE and LDPE, and they are excellent in working properties and permit the control of physical properties such as density, a melting point and crystallinity mainly in the state of a homopolymer.
Abstract:
A copolymer having the excellent molding and working properties obtainable by using a branched ethylenic macromonomer and a comonomer selected from the group consisting of ethylene, an .alpha.-olefin having 3 to 20 carbon atoms, cyclic olefins and styrenes. The branched ethylenic macromonomer of the present invention is derivable from ethylene singly or derivable from ethylene and another olefin, (a) a molar ratio of a terminal methyl group/a vinyl group in the macromonomer being in the range of 1 to 100, the macromonomer having a branch other than the branch directly derived from the other olefin, (b) a ratio of vinyl groups to the total unsaturated groups in the macromonomer being 70 mol % or more, (c) a weight-average molecular weight of the macromonomer in terms of a polyethylene measured by a GPC being in the range of 100 to 20,000.
Abstract:
There are disclosed a styrenic block copolymer having a reduced viscosity of 0.01 to 20 dl/g (0.05 g/l in 1,2,4-trichlorobenzene at 135.degree. C.) which comprises highly syndiotactic styrenic-polymer segments and 10.sup.-4 to 10 mol % of heteroatom-containing styrenic polymer segments; a resin composition comprising the above styrenic block copolymer and a thermoplastic resin, an inorganic filler or an organic filler; a multi-layer material comprising at least one layer composed of the above styrenic block copolymer or the above resin composition; and a process for producing the above styrenic block copolymer which comprises polymerizing a styrenic monomer in the presence of a specific catalyst and adding a heteroatom-containing styrenic monomer to successively proceed with copolymerizaiton reaction. The above-disclosed styrenic block copolymer and the resin composition exhibit excellent compatibility and adhesivenesss, and the multi-layer material is expected to find a wide range of applications in automobile parts, electrical and electronic parts as well as film, sheet, etc.