Abstract:
A system and methods are described for generating reagent ions and product ions for use in a mass spectrometry system. Applications for the system and method are also disclosed for detecting volatile organic compounds in trace concentrations. A microwave or high-frequency RF energy source ionizes particles of a reagent vapor to form reagent ions. The reagent ions enter a chamber, such as a drift chamber, to interact with a fluid sample. An electric field directs the reagent ions and facilitates an interaction with the fluid sample to form product ions. The reagent ions and product ions then exit the chamber under the influence of an electric field for detection by a mass spectrometer module. The system includes various control modules for setting values of system parameters and analysis modules for detection of mass and peak intensity values for ion species during spectrometry and faults within the system.
Abstract:
A switching apparatus includes a first transistor, a second transistor, a first circuit module, a first current sensor and a control circuit. The first transistor includes first, second and third terminals. The first terminal of the first transistor is coupled to a first power terminal. The third terminal of the first transistor includes a gate or base of the first transistor. The second transistor includes first, second and third terminals. The first terminal of the second transistor is coupled to a second power terminal. The second terminal of the second transistor is coupled to the second terminal of the first transistor. The third terminal of the second transistor includes a gate or base of the second transistor. The first circuit module includes an inductor in parallel with a diode. The first circuit module is connected between the first terminal of the second transistor and the second power terminal.
Abstract:
An improved plasma vessel (i.e., plasma applicator) that provides effective cooling includes a plurality of generally linear tubes having a dielectric interior fluidly connected together by dielectric connectors. The tubes and connectors are joined together to form a leak-tight plasma vessel. A cooling system surrounding the improved plasma vessel includes a rigid cooling plate and a deformable thermal transfer material disposed between the plasma vessel and the cooling plate. After use or at an operator's discretion, the plasma vessel can be removed from the cooling system and a new vessel may be inserted in its place. Alternatively, the used vessel may be refurbished and re-inserted into the cooling system. The new or refurbished vessel may or may not be of the same size or configuration as the used vessel. Thermal contact between the cooling system and the new or refurbished vessel, however is maintained through the deformable thermal transfer material.
Abstract:
A method and apparatus for exciting gas that involves generating an alternating magnetic field unidirectionally through a magnetic core defining a gap, across the gap and through a plasma vessel that includes dielectric material. The magnetic field induces an electric field in the plasma vessel that generates the plasma.
Abstract:
A multi-state input system is described. Specifically, one embodiment of the disclosure sets forth a method, which includes the steps of receiving a first input signal, determining a first set of input parameters associated with the first input signal, and executing a predetermined function when the first set of input parameters is identified.
Abstract:
The present invention provides a method of resolving piperdin-yl-alkylene-alcohols, in high yield at high enantiomeric purity, for example 2-piperidin-2-yl-ethanol.
Abstract:
The present invention provides a removable portable computer device. In an embodiment, the portable computer device includes: a flat panel computer; a base; a back plate; a first connection structure through which the base is connected with the back plate; a second connection structure through which the back plate is connected with the flat panel computer. The flat panel computer is removably connected onto the back plate through the second connection structure. In the present invention, the flat panel computer is removably mounted on the back plate through the second connection structure. When the computer is required to be used at other location and a mass of keyboard input is not needed, it only requires to take off the flat panel computer from the back plate so as to easily carry the computer from one location to another location for use, thus the portability is greatly increased.
Abstract:
Apparatus for dissociating gases includes a plasma chamber comprising a gas. A first transformer having a first magnetic core surrounds a first portion of the plasma chamber and has a first primary winding. A second transformer having a second magnetic core surrounds a second portion of the plasma chamber and has a second primary winding. A first solid state AC switching power supply including one or more switching semiconductor devices is coupled to a first voltage supply and has a first output that is coupled to the first primary winding. A second solid state AC switching power supply including one or more switching semiconductor devices is coupled to a second voltage supply and has a second output that is coupled to the second primary winding. The first solid state AC switching power supply drives a first AC current in the first primary winding. The second solid state AC switching power supply drives a second AC current in the second primary winding. The first AC current and the second AC current induce a combined AC potential inside the plasma chamber that directly forms a toroidal plasma that completes a secondary circuit of the transformer and that dissociates the gas.
Abstract:
A system, components thereof, and methods are described for time-of-flight mass spectrometry. A microwave or high-frequency RF energy source is used to ionize a reagent vapor to form reagent ions. The reagent ions enter a chamber and interact with a fluid sample to form product ions. The reagent ions and product ions are directed to a time-of-flight mass spectrometer module for detection and determination of a mass value for the ions. The time-of-flight mass spectrometer module can include an optical system and an ion beam adjuster for focusing, interrupting, or altering a flow of reagent and product ions according to a specified pattern. The time-of-flight mass spectrometer module can include signal processing techniques to collect and analyze an acquired signal, for example, using statistical signal processing, such as maximum likelihood signal processing.
Abstract:
Plasma ignition and cooling apparatus and methods for plasma systems are described. An apparatus can include a vessel and at least one ignition electrode adjacent to the vessel. A total length of a dimension of the at least one ignition electrode is greater than 10% of a length of the vessel's channel. The apparatus can include a dielectric toroidal vessel, a heat sink having multiple segments urged toward the vessel by a spring-loaded mechanism, and a thermal interface between the vessel and the heat sink. A method can include providing a gas having a flow rate and a pressure and directing a portion of the flow rate of the gas into a vessel channel. The gas is ignited in the channel while the remaining portion of the flow rate is directed away from the channel.