Abstract:
A barrier operating system having a diagnostic performance feature includes a motorized barrier movable between limit positions and a counterbalance system coupled to the barrier. A disconnect mechanism may be interposed between the motor and the counterbalance system so that the barrier can be moved manually without assistance from the motor. A position detection device is coupled to either the barrier or the counterbalance system and generates a barrier position signal. One of the motor and the position detection device generates operational parameter values for the barrier moving in either direction. A controller receives the operational parameter values and the barrier position signal, and as the barrier is manually moved, the controller compares operational parameter values for each direction of movement at a given position and generates a diagnostic signal based upon the comparison.
Abstract:
A bridge device linking transmitters to a home network includes a transmitter signal receiver adapted to receive transmitter signals in a transmitter format from at least one transmitter and a network signal transceiver adapted to transmit and receive network signals in a network format to and from a home network. A bridge controller is connected to the transmitter signal receiver and the network signal transceiver for the purpose of converting the signals between the formats. The bridge device is able to learn various transmitter type for conversion to a learned home network standard. A master controller may be used to assign specific transmitter button actuations to control specific appliance functions.
Abstract:
A wireless transmitter used with an operator system controls movement of a barrier between limit positions can be used in an unsecure, single-button actuation mode, or a secure, multiple button actuation mode. The transmitter includes at least two transmitter switches, and a controller connected to the switches. The controller has a first mode of operation, wherein actuation of a single one of the switches generates a wireless signal receivable by the operator system, and a second mode of operation, wherein actuation of the switches in a predetermined sequence generates the wireless signal.
Abstract:
A networked movable barrier operator for moving a barrier between limit positions including a motor attachable to the barrier, at least one non-network device, and at least one network device. A controller is connected to the motor and communicates operational signals between the non-network device and the network device to the motor, and communicates operational signals between the motor and the non-network device and the network device.
Abstract:
A wireless transmitter used with an operator system controls movement of a barrier between limit positions can be used in an unsecure, single-button actuation mode, or a secure, multiple button actuation mode. The transmitter includes at least two transmitter switches, and a controller connected to the switches. The controller has a first mode of operation, wherein actuation of a single one of the switches generates a wireless signal receivable by the operator system, and a second mode of operation, wherein actuation of the switches in a predetermined sequence generates the wireless signal.
Abstract:
An operating system for a motorized barrier includes an operator for controlling movement of the barrier between various positions. The operator may receive wireless signals from a wireless or wired wall station transmitter, a wireless keyless entry device and/or a portable remote transmitter device. The system also includes a device such as a light kit or switch that controls a load, wherein the device is capable of also receiving wireless signals to control the kit or the load. And the transmitters are capable of generating wireless signals receivable by the operator and the device for independent operation of each.
Abstract:
An operating system for controllably moving in upward and downward directions a sectional door (D) in relation to a door frame (12) having a pair of jambs (13, 14) and an interconnecting header (15), including a counterbalancing system (30) having a drive tube (31) interconnected with the sectional door proximate the ends thereof, a resonible motorized operator (10) mounted adjacent to the drive tube and between the ends of the sectional door, and a drive train (70) interconnecting the drive tube and the motorized operator for selectively driving the sectional door in upward and downward directions. The operator includes a motor (40) for selectively rotating a drive shaft (60) in two directions, a drive wheel (80) on the drive shaft for rotating the drive train in one direction when the motor rotates the drive shaft in one direction, and a coupler on the drive shaft rotating the drive wheel when located in a first position and directly engaging and rotating the drive gear in the other direction when located in a second position.
Abstract:
An internal entrapment system for a garage door operator (30), comprising a motor (48) for transferring a garage door (12) between first and second positions; a pulse counter (62) for detecting a speed of the garage door (12) during transfer between first and second positions; a potentiometer (56) for determining a plurality of positional locations of the garage door (12) during transfer between first and second positions separate from said pulse counter (62); and a control circuit (50) for calculating a motor torque value from the speed for each of said plurality of positional locations to compare with a plurality of door profile data points, wherein said control circuit (50) takes corrective action if the difference between the motor torque value for each of said plurality of positional locations and said plurality of door profile data points exceeds a predetermined threshold, and wherein said control circuit (50) updates said plurality of door profile data points to the motor torque values for each respective said plurality of positional locations if the predetermined threshold is not exceeded. In another embodiment both speed and position are detected by a slider element (58) which is connected to the control circuit (50). A closed loop lift cable system (100) may be employed for use with the internal entrapment system. The system (100) utilizes a lift cable (164) connected between a bottom section of the door and a drum mechanism (150) and an upper cable connected between a top section of the door and the drum mechanism (150). A tension device (180, 200) ensures that the door and cables act as one and thus allow closed loop control of the door.
Abstract:
An assembly (24) for monitoring the travel of a device includes a potentiometer (26) having a slide bar (32). The potentiometer generates a resistance value according to a position of the slide bar which is coupled to the door through a rotatable member (40) carried by a bracket (34). A slide rack (36) is carried by the bracket and is coupled to both the slide bar and the rotatable member. The slide rack operatively engages the rotatable member between predetermined first and second positions and operatively disengages from the rotatable member when at the first and second positions.
Abstract:
A network operator radio module (NORM) configured to be removably attached to a barrier operator comprises a transmitting antenna, a receiving antenna, a transceiver antenna, and a microcontroller. The module communicates with a communication network that comprises various nodes configured by a network controller module and a network communication module. Each node may be associated with a network appliance, and may be remotely controlled by sending a suitable function code to the module via local command signals. Furthermore, various local remote transmitters and keyless entry transmitters are configured to transmit function codes to control the module and the associated various network appliances.