Abstract:
Distributed feedback-laser diodes are provided. The distributed feedback-laser diode may include a substrate, a lower cladding layer having a grating on the substrate, an active layer disposed on the lower cladding layer, a first upper cladding layer disposed on the active layer, a phase-shift region extending in a first direction on the first upper cladding layer, and a ridge waveguide layer extending in a second direction crossing the first direction on the phase-shift region.
Abstract:
A high-efficiency laser diode is provided. Since a λ/4 phase-shifted distributed feedback (DFB) laser diode has a great coupling coefficient, mode stability is poor due to spatial hole burning when multiplication of the coupling coefficient by length of a resonator is equal to or greater than 2. In the inventive concept, a region capable of controlling spatial hole burning is inserted into a semiconductor laser diode structure. Thus, an ultrahigh-speed pulse laser diode having a repetition rate in the band ranging from 100 GHz to 300 GHz is obtained. In addition, a single-mode laser diode with improved energy use efficiency is implemented by changing the configuration of a laser diode.
Abstract:
Disclosed is a terahertz wave generator which includes a dual mode semiconductor laser device configured to generate at least two laser lights having different wavelengths and to beat the generated laser lights; and a photo mixer formed on the same chip as the dual mode semiconductor laser device and to generate a continuous terahertz wave when excited by the beat laser light.
Abstract:
Provided is a multi-wavelength optical source generator. The multi-wavelength optical source generator includes: a gain part generating a plurality of lights through a plurality of gain waveguides; a reflective part transmitting or reflecting lights provided from each of the plurality of gain waveguides according to a wavelength; and a multiplexing part multiplexing a plurality of lights transmitted and outputted through the reflective part.
Abstract:
Disclosed is a terahertz wave generator which includes a dual mode semiconductor laser device configured to generate at least two laser lights having different wavelengths and to beat the generated laser lights; and a photo mixer formed on the same chip as the dual mode semiconductor laser device and to generate a continuous terahertz wave when excited by the beat laser light.
Abstract:
Provided is a multiple distributed feedback laser device which includes a first distributed feedback region, a modulation region, a second distributed feedback region, and an amplification region. An active layer is disposed on the substrate of the first distributed feedback region, the modulation region, the second distributed feedback region, and the amplification region. A first diffraction grating is disposed in the first distributed feedback region to be coupled to the active layer in the first distributed feedback region. A second diffraction grating is disposed in the second distributed feedback region to be coupled to the active layer in the second distributed feedback region. The multiple distributed feedback laser device further includes a first micro heater configured to supply heat to the first diffraction grating and a second micro heater configured to supply heat to the second diffraction grating.
Abstract:
Provided is a multiple distributed feedback laser device which includes a first distributed feedback region, a modulation region, a second distributed feedback region, and an amplification region. An active layer is disposed on the substrate of the first distributed feedback region, the modulation region, the second distributed feedback region, and the amplification region. A first diffraction grating is disposed in the first distributed feedback region to be coupled to the active layer in the first distributed feedback region. A second diffraction grating is disposed in the second distributed feedback region to be coupled to the active layer in the second distributed feedback region. The multiple distributed feedback laser device further includes a first micro heater configured to supply heat to the first diffraction grating and a second micro heater configured to supply heat to the second diffraction grating.
Abstract:
Provided are a photoelectric device using a PN diode and a silicon integrated circuit (IC) including the photoelectric device. The photoelectric device includes: a substrate; and an optical waveguide formed as a PN diode on the substrate, wherein a junction interface of the PN diode is formed in a direction in which light advances; and an electrode applying a reverse voltage to the PN diode, wherein N-type and P-type semiconductors of the PN diode are doped at high concentrations and the doping concentration of the N-type semiconductor is higher than or equal to that of the P-type semiconductor.
Abstract:
Provided is an apparatus and method for simultaneous optical wavelength conversion and optical clock signal extraction using semiconductor optical amplifiers (SOAs). The apparatus includes: a wavelength converter receiving a pump beam having input information and a probe beam having a different wavelength from the pump beam, and outputting the pump beam with an overshoot shifted to a red wavelength and an undershoot shifted to a blue wavelength due to non-linear characteristics and self-phase modulation of semiconductor optical amplifiers (SOAs) and the probe beam delivered the input information from the pump beam; an optical divider dividing output paths of the probe beam to which the input information has been delivered and the pump beam having the overshoot and the undershoot; a converted-wavelength extractor filtering the probe beam received from the optical divider; and a clock data regenerator obtaining a pseudo return-to-zero (PRZ) signal from the pump beam received from the optical divider and extracting a clock signal from the PRZ signal.The apparatus and method can simultaneously perform wavelength conversion and optical clock signal extraction on an NRZ signal using an optical method, without converting the NRZ signal into an electrical signal.
Abstract:
Provided are an apparatus for and a method of generating millimeter waves, in which millimeter-wave generation and frequency up-conversion can be achieved at the same time using a single device. The apparatus includes a mode-locking laser diode (LD) which has a distributed feedback (DFB) sector and a gain sector and generates high-frequency optical pulses through a passive mode locking process, a modulator which modulates an external optical signal using an electric signal and injects the modulated optical signal to the mode-locking LD to lock the optical pulses, and a radio frequency (RF) locking signaling unit which injects the electric signal to the modulator.