摘要:
Distributed feedback-laser diodes are provided. The distributed feedback-laser diode may include a substrate, a lower cladding layer having a grating on the substrate, an active layer disposed on the lower cladding layer, a first upper cladding layer disposed on the active layer, a phase-shift region extending in a first direction on the first upper cladding layer, and a ridge waveguide layer extending in a second direction crossing the first direction on the phase-shift region.
摘要:
Distributed feedback-laser diodes are provided. The distributed feedback-laser diode may include a substrate, a lower cladding layer having a grating on the substrate, an active layer disposed on the lower cladding layer, a first upper cladding layer disposed on the active layer, a phase-shift region extending in a first direction on the first upper cladding layer, and a ridge waveguide layer extending in a second direction crossing the first direction on the phase-shift region.
摘要:
Provided is a multichannel transmitter optical module which includes a plurality of light source units configured to generate light, a plurality of an electro-absorption modulators (EAMs) configured to modulate the generated light to an optical signal through a radio frequency (RF) signal, a plurality of RF transmission lines configured to apply the RF signal to the EAMs, and a combiner configured to combine the modulated optical signal. The RF transmission lines are connected to the EAMs in a traveling wave (TW) electrode manner. The multichannel transmitter optical module has alleviated crosstalk and is compactly integrated to have a small size.
摘要:
Provided are a spot size converter and a method of manufacturing the spot size converter. The method includes stacking a lower clad layer, a core layer, and a first upper clad layer on a substrate, tapering the first upper clad layer and the core layer in a first direction on a side of the substrate, forming a waveguide layer on the first upper clad layer and the lower clad layer, and etching the waveguide layer, the first upper clad layer, the core layer, and the lower clad layer such that the waveguide layer is wider than a tapered portion of the core layer on the side of the substrate and has the same width as that of the core layer on another side of the substrate.
摘要:
Provided is an optical comb generator including a light source, a first waveguide region, a modulation region, and a second waveguide region. The light source is configured to output single-mode light. The first waveguide region divides an output of the light source into first light and second light. The modulation region includes a first modulator and a second modulator modulating the first light and the second light respectively. The second waveguide region combines outputs of the first modulator and the second modulator to output an optical comb. Here, the first modulator and the second modulator respectively include a first quantum well and a second quantum well having an asymmetric structure with respect to each other. The light source, the first waveguide region, the modulation region, and the second waveguide region are integrated into one substrate.
摘要:
Provided are a distributed feedback laser diode and a manufacturing method thereof. The distributed feedback laser diode includes a first area having a first grating layer disposed in a longitudinal direction, a second area disposed adjacent to the first area and having a second grating layer disposed in the longitudinal direction, and an active layer disposed over the first and second areas. Coupling coefficients of the first and second grating layers are made different in the first and second areas by a selective area growth method. The distributed feedback laser diode includes grating layers each having an asymmetric coefficient and is implemented within an optimal range capable of obtaining both a high front facet output and stable single mode characteristics. Thus, high manufacturing yield and low manufacturing cost can be achieved.
摘要:
Provided is a multi-wavelength optical source generator. The multi-wavelength optical source generator includes: a gain part generating a plurality of lights through a plurality of gain waveguides; a reflective part transmitting or reflecting lights provided from each of the plurality of gain waveguides according to a wavelength; and a multiplexing part multiplexing a plurality of lights transmitted and outputted through the reflective part.
摘要:
Provided is a multi-wavelength optical source generator. The multi-wavelength optical source generator includes: a gain part generating a plurality of lights through a plurality of gain waveguides; a reflective part transmitting or reflecting lights provided from each of the plurality of gain waveguides according to a wavelength; and a multiplexing part multiplexing a plurality of lights transmitted and outputted through the reflective part.
摘要:
Provided is a laser device. In the laser device, an active layer is connected to a stem core of a 1×2 splitter on a substrate, a first diffraction grating is coupled to a first twig core of the 1×2 splitter, and a second diffraction grating is coupled to a second twig core of the 1×2 splitter. An active layer-micro heater is designed to supply heat to the active layer. First and second micro heaters are designed to supply heats to the first and second diffraction gratings, respectively, thereby varying a Bragg wavelength.
摘要:
Provided is a multiple distributed feedback laser device which includes a first distributed feedback region, a modulation region, a second distributed feedback region, and an amplification region. An active layer is disposed on the substrate of the first distributed feedback region, the modulation region, the second distributed feedback region, and the amplification region. A first diffraction grating is disposed in the first distributed feedback region to be coupled to the active layer in the first distributed feedback region. A second diffraction grating is disposed in the second distributed feedback region to be coupled to the active layer in the second distributed feedback region. The multiple distributed feedback laser device further includes a first micro heater configured to supply heat to the first diffraction grating and a second micro heater configured to supply heat to the second diffraction grating.