Abstract:
This invention relates to solar panels with improved encapsulants and back sheets for greater power output and/or increased efficiency by using materials with higher thermal conductivity than conventional solar panels. According to certain embodiments the improved materials include fillers while maintaining sufficient dielectric properties. According to certain other embodiments, the invention includes a solar panel with the improved encapsulant between solar cells and the improved back sheet. The invention also includes a method of making a solar panel including the improved materials. The invention also includes solar modules and methods related to encapsulants and the back sheets including filler materials with an enhanced particle size distribution, a brightening agent, or an infrared extinguisher.
Abstract:
Polyester compositions are disclosed that include polyester polymers or copolymers having incorporated therein titanium nitride particles that provide one or more of the following advantages: improving the reheat properties of the compositions, improving the color of the compositions through reduced yellowness, and improving the UV-blocking properties of the compositions. Processes for making such compositions are also disclosed. The titanium nitride particles may be incorporated in the polyester by melt compounding, or may be added at any stage of the polymerization, such as during the melt-phase of the polymerization. A range of particle sizes may be used, as well as a range of particle size distributions. The polyester compositions are suitable for use in packaging made from processes in which a reheat step is desirable, or decreased yellowness is desired, or increased resistance to the effects of ultraviolet light is desired, or any combination of the foregoing.
Abstract:
Polyester compositions are disclosed that include polyester polymers or copolymers having incorporated therein metallic titanium particles that improve the reheat properties of the compositions. Processes for making such compositions are also disclosed. The titanium particles may be incorporated in the polyester by melt compounding, or may be added at any stage of the polymerization, such as during the melt-phase of the polymerization. A range of particle sizes may be used, as well as a range of particle size distributions. The polyester compositions are suitable for use in packaging made from processes in which a reheat step is desirable.
Abstract:
A polyester composition containing: a) aluminum atoms; and b) alkaline earth atoms or alkali metal atoms or alkali compound residues such as lithium atoms; and c) particles comprising titanium, zirconium, vanadium, niobium, hafnium, tantalum, chromium, tungsten, molybdenum, iron, or nickel atoms or combinations thereof, where the particles improve the reheat rate of the polyester composition. The polyester polymer compositions may also contain phosphorus catalyst deactivators/stabilizers. The polyester compositions and the articles made from the compositions such as bottle preforms and stretch blow molded bottles have improved reheat rate while maintaining low haze, high L*, a b* below 3, and have low levels of acetaldehyde. In the process for making the polyester polymer, the polymer melt is polycondensed in the presence of a) and b), with the particles c) added in a melt phase process or added to the polymer in an injection molding machine or extruder. The polyester polymer composition can be made to high IV from the melt phase while avoiding solid state polymerization.
Abstract:
Polyester compositions are disclosed that include polyester polymers or copolymers having incorporated therein titanium carbide particles that improve the reheat properties of the compositions. Processes for making such compositions are also disclosed. The titanium carbide particles may be incorporated in the polyester by melt compounding, or may be added at any stage of the polymerization, such as during the melt-phase of the polymerization. A range of particle sizes may be used, as well as a range of particle size distributions. The polyester compositions are suitable for use in packaging made from processes in which a reheat step is desirable.
Abstract:
Polyester compositions are disclosed that include polyester polymers or copolymers having incorporated therein metallic nickel particles that improve the reheat properties of the compositions. Processes for making such compositions are also disclosed. The nickel particles may be incorporated in the polyester by melt compounding, or may be added at any stage of the polymerization, such as during the melt-phase of the polymerization. A range of particle sizes may be used, as well as a range of particle size distributions. The polyester compositions are suitable for use in packaging made from processes in which a reheat step is desirable.