Abstract:
An electronic device including a signal transmission system. The electronic device may include a housing, and a cover coupled to the housing and defining a groove formed in the cover. The electronic device may also include a signal transmission system positioned within the housing. The signal transmission system may include an antenna at least partially received within the groove formed in the cover. The antenna may have an antenna body, and a contact pad in electrical communication with the antenna body. The signal transmission system may also have a flexible member positioned adjacent the antenna body. The flexible member may contact the contact pad of the antenna.
Abstract:
A cover for an electronic device and methods of forming a cover is disclosed. The electronic device may include a housing, and a cover coupled to the housing. The cover may have an inner surface having at least one of an intermediate polish and a final polish, a groove formed on the inner surface, and an outer surface positioned opposite the inner surface. The outer surface may have at least one of the intermediate polish and the final polish. The cover may also have a rounded perimeter portion formed between the inner surface and the outer surface. The rounded perimeter portion may be positioned adjacent the groove. The method for forming the cover may include performing a first polishing process on the sapphire component using a polishing tool, and performing a second polishing process on the groove of the sapphire component forming the cover using blasting media.
Abstract:
An electronic device may be provided with a conductive housing. An antenna window structure may be formed in an opening in the housing. The antenna window structure may have an antenna support structure that is attached to the conductive housing and that supports antenna structures. An antenna window cap may be mounted in the opening and attached to the antenna support structure with liquid adhesive. Alignment structures may be provided in the antenna support structure. An antenna support plate with mating alignment structures may be used in attaching the antenna structures to the antenna support structures. Metal shielding structures may be used to provide electromagnetic shielding. A shielding wall may be formed from a sheet metal structure supported by a plastic support structure. A flexible metal shielding foil layer may be welded to the shielding wall using a sacrificial plate.
Abstract:
An electronic device may have a display. A display cover layer and a transparent inner display member may overlap a display pixel layer. The display pixel layer may have an array of display pixels for displaying images for a user. A touch sensor layer may be interposed between the display pixel layer and the transparent display member. A ferromagnetic shielding layer may be mounted below the display pixel layer. A flexible printed circuit containing coils of metal signal lines that form a near-field communications loop antenna may be interposed between the ferromagnetic shielding layer and the display pixel layer. A non-near-field antenna such as an inverted-F antenna may have a resonating element mounted on an inner surface of the display cover layer. The resonating element may be interposed between the transparent display member and the display cover layer.
Abstract:
An electronic device may have a display mounted in a housing. The display may have a display panel with an array of pixels on a flexible substrate. A display cover layer may overlap the display panel. The flexible substrate may have a protruding portion that forms a tail. The tail may be coupled to a printed circuit on which a display driver integrated circuit and/or other circuitry is mounted. When the display is mounted in the housing, the tail may be bent back on itself to create a bend. The bend may be embedded in a molded polymer member. The molded polymer member may be attached to the housing with adhesive and may directly contact an inner surface of the display cover layer.
Abstract:
An electronic device may have a display mounted in a housing. The display may have a display panel with an array of pixels on a flexible substrate. A display cover layer may overlap the display panel. The flexible substrate may have a protruding portion that forms a tail. The tail may be coupled to a printed circuit on which a display driver integrated circuit and/or other circuitry is mounted. When the display is mounted in the housing, the tail may be bent back on itself to create a bend. The bend may be embedded in a molded polymer member. The molded polymer member may be attached to the housing with adhesive and may directly contact an inner surface of the display cover layer.
Abstract:
Device localization (e.g., ultra-wideband device localization) may be used to provide coordinated outputs and/or receive coordinated inputs using multiple devices. Providing coordinated outputs may include providing partial outputs using multiple devices, modifying an output of a device based on its position and/or orientation relative to another device, and the like. In some cases, each device of a set of multiple devices may provide a partial output, which combines with partial outputs of the remaining devices to produce a coordinated output.
Abstract:
An electronic device may have a display. A display cover layer and a transparent inner display member may overlap a display pixel layer. The display pixel layer may have an array of display pixels for displaying images for a user. A touch sensor layer may be interposed between the display pixel layer and the transparent display member. A ferromagnetic shielding layer may be mounted below the display pixel layer. A flexible printed circuit containing coils of metal signal lines that form a near-field communications loop antenna may be interposed between the ferromagnetic shielding layer and the display pixel layer. A non-near-field antenna such as an inverted-F antenna may have a resonating element mounted on an inner surface of the display cover layer. The resonating element may be interposed between the transparent display member and the display cover layer.
Abstract:
An electronic device is provided with a display and a light sensor that receives light that passes through the display. The display includes features that increase the amount of light that passes through the display. The features may be translucency enhancement features that allow light to pass directly through the display onto a light sensor mounted behind the display or may include a light-guiding layer that guides light through the display onto a light sensor mounted along an edge of the display. The translucency enhancement features may be formed in a reflector layer or an electrode layer for the display. The translucency enhancement features may include microperforations in a reflector layer of the display, a light-filtering reflector layer of the display, or a reflector layer of the display that passes a portion of the light and reflects an additional portion of the light.
Abstract:
An electronic device may have a display mounted in a housing. The display may have a pixel array that produces images. A display cover layer may overlap the pixel array. The display cover layer may have a planar central area surrounded by a peripheral edge area with a curved cross-sectional profile. From an on-axis viewing angle, an image on the pixel array is fully viewable through the planar central area and the peripheral edge area. From an off-axis viewing angle, the image is partly viewable through the peripheral edge area and not through the central area. To avoid an undesired color cast in the partly viewable image seen through the peripheral edge area of the display cover layer, the display may be provided with color cast compensation structures such as a guest-host liquid crystal layer that exhibits an anisotropic colored light absorption characteristic, a diffuser layer, and/or other optical structures.