Abstract:
A method and apparatus for storing and accessing sparse data is disclosed. A sparse array circuit may receive information indicative of a request to perform a read operation on a memory circuit that includes multiple banks. The sparse array circuit may compare an address included in the received information to multiple entries that correspond to address locations in the memory circuit that store sparse data. In response to a determination that that the address matches a particular entry, the sparse array may generate one or more control signals that may disable the read operation, and cause a data control circuit to transmits the sparse data pattern.
Abstract:
A power switch control circuit is disclosed. A sensor circuit may determine a leakage current of a power switch coupled to a power supply signal and a power terminal of a circuit block. The power switch may be configured to selectively couple or decouple the circuit block from the power supply signal using a switch control signal. The switch control circuit may, in response to receiving a request to open the power switch, determine a target voltage level that is greater than a voltage level of the power supply signal for the switch control signal using the leakage current, and transition the switch control signal from an initial voltage to the target voltage level.
Abstract:
A method and apparatus for storing and accessing sparse data is disclosed. A sparse array circuit may receive information indicative of a request to perform a read operation on a memory circuit that includes multiple banks. The sparse array circuit may compare an address included in the received information to multiple entries that correspond to address locations in the memory circuit that store sparse data. In response to a determination that that the address matches a particular entry, the sparse array may generate one or more control signals that may disable the read operation, and cause a data control circuit to transmits the sparse data pattern.
Abstract:
Embodiments of a jitter detection circuit are disclosed that may allow for detecting both cycle and phase jitter in a clock distribution network. The jitter detection circuit may include a phase selector, a data generator, a delay chain, a logic circuit, and clocked storage elements. The phase selector may be operable to select a clock phase to be used for the launch clock, and the data generator may be operable to generate a data signal responsive to the launch clock. The delay chain may generate a plurality of outputs dependent upon the data signal, and the clocked storage elements may be operable to capture the plurality of outputs from the delay chain, which may be compared to expected data by the logic circuit.
Abstract:
A method and various circuit embodiments for low latency initialization of an SRAM are disclosed. In one embodiment, an IC includes an SRAM coupled to at least one functional circuit block. The SRAM includes a number of storage location arranged in rows and columns. The functional circuit block and the SRAM may be in different power domains. Upon initially powering up or a restoration of power, the functional circuit block may assert an initialization signal to begin an initialization process. Responsive to the initialization signal, level shifters may force assertion of various select/enable signals in a decoder associated with the SRAM. Thereafter, initialization data may be written to the SRAM. Writing initialization data may be performed on a row-by-row basis, with all columns in a row being written to substantially simultaneously.
Abstract:
An apparatus, system, and method are contemplated in which the apparatus may include a memory with a plurality of pages, circuitry, and a plurality of pre-charge circuits. The circuitry may be configured to receive a first read command and address, corresponding to a given page. The plurality of pre-charge circuits may be configured to charge a plurality of data lines to a predetermined voltage. The circuitry may be configured to read data values from the memory, and transfer the data values to the plurality of data lines. The plurality of pre-charge circuits may be configured to maintain the data on the plurality of data lines. The circuitry may select a first subset of the maintained data, receive a second read command and a second address by the memory, and select a second subset of the maintained data responsive to a determination that the second address corresponds to the given page.
Abstract:
A system, a memory device and a method are contemplated in which the apparatus may include a plurality of memory cells, a plurality of voltage reduction circuits, and control circuitry. The plurality of voltage reduction circuits may be configured to reduce a voltage level of a power supply coupled to the plurality of memory cells. The control circuitry may be configured to select one of the voltage reduction circuits based on one or more operating parameters. The control circuitry may be further configured to activate the selected voltage reduction circuit upon receiving a write command directed towards the memory cells. The control circuitry may be further configured to execute the write command. Upon completion of the write command, the control circuitry may be further configured to de-activate the selected one of the voltage reduction circuits.
Abstract:
A register file cell structure to enable lower voltage writes is disclosed. In one embodiment, a register file includes a state element made up of two cross-coupled inverters. Each of the inverters includes a p-channel metal oxide semiconductor (PMOS) transistor having a source terminal coupled to a virtual voltage node. One or more PMOS transistors are coupled in series between the virtual voltage node and a global voltage node. Each of the one or more PMOS transistors includes a gate terminal that is hardwired to a ground node, and thus these devices remain active when power is applied to the global voltage node. The presence of the one or more PMOS devices coupled between the virtual and global voltage nodes results in the ability to overwrite contents stored in the state element at lower voltages than otherwise attainable without the one or more PMOS devices.