Abstract:
A method and apparatus for performing post-exposure bake cooling operations is described herein. The method begins by post exposure baking a substrate disposed on heated substrate support in a process chamber, the process chamber having a showerhead. The heated substrate support is moved to increase a distance between the heated substrate support and a cooled plate of the showerhead. The substrate is separated from the heated substrate support using a substrate lifting device. The substrate is moved into a close proximity to the cooled showerhead. The substrate is cooled until the substrate is less than about 70 degrees Celsius. The substrate is spaced away from the cooled showerhead using the substrate lifting device and aligning the substrate with a substrate transfer passage of the processing chamber for removal by a robot.
Abstract:
Embodiments of the present disclosure generally relate to a batch processing chamber that is adapted to simultaneously cure multiple substrates at one time. The batch processing chamber includes multiple processing sub-regions that are each independently temperature controlled. The batch processing chamber may include a first and a second sub-processing region that are each serviced by a substrate transport device external to the batch processing chamber. In addition, a slotted cover mounted on the loading opening of the batch curing chamber reduces the effect of ambient air entering the chamber during loading and unloading.
Abstract:
The present disclosure relates to high pressure processing apparatus for semiconductor processing. The apparatus described herein include a high pressure process chamber and a containment chamber surrounding the process chamber. A high pressure fluid delivery module is in fluid communication with the high pressure process chamber and is configured to deliver a high pressure fluid to the process chamber.
Abstract:
Embodiments of the disclosure relate to an apparatus and method for processing semiconductor substrates. In one embodiment, a processing system is disclosed. The processing system includes an outer chamber that surrounds an inner chamber. The inner chamber includes a substrate support upon which a substrate is positioned during processing. The inner chamber is configured to have an internal volume that, when isolated from an internal volume of the outer chamber, is changeable such that the pressure within the internal volume of the inner chamber may be varied.
Abstract:
Apparatus and methods for gas distribution assemblies are provided. In one aspect, a gas distribution assembly is provided comprising an annular body comprising an annular ring having an inner annular wall, an outer wall, an upper surface, and a bottom surface, an upper recess formed into the upper surface, and a seat formed into the inner annular wall, an upper plate positioned in the upper recess, comprising a disk-shaped body having a plurality of first apertures formed therethrough, and a bottom plate positioned on the seat, comprising a disk-shaped body having a plurality of second apertures formed therethrough which align with the first apertures, and a plurality of third apertures formed between the second apertures and through the bottom plate, the bottom plate sealingly coupled to the upper plate to fluidly isolate the plurality of first and second apertures from the plurality of third apertures.
Abstract:
Embodiments described herein relate to methods and apparatus for performing immersion field guided post exposure bake processes. Embodiments of apparatus described herein include a chamber body defining a processing volume. A pedestal may be disposed within the processing volume and a first electrode may be coupled to the pedestal. A moveable stem may extend through the chamber body opposite the pedestal and a second electrode may be coupled to the moveable stem. In certain embodiments, a fluid containment ring may be coupled to the pedestal and a dielectric containment ring may be coupled to the second electrode.
Abstract:
Embodiments of the present disclosure generally relate to a batch processing chamber that is adapted to simultaneously cure multiple substrates at one time. The batch processing chamber includes multiple processing sub-regions that are each independently temperature controlled. The batch processing chamber may include a first and a second sub-processing region that are each serviced by a substrate transport device external to the batch processing chamber. In addition, a slotted cover mounted on the loading opening of the batch curing chamber reduces the effect of ambient air entering the chamber during loading and unloading.
Abstract:
A chamber for processing a substrate is provided. The chamber includes a chamber body having one or more sidewalls and a bottom with a substrate support disposed inside the chamber body. The chamber also includes a showerhead disposed above the substrate support. The showerhead includes a showerhead faceplate that faces the substrate support and is electrically coupled to a capacitive RF power source. A space between the substrate support and the showerhead faceplate defines a processing volume. The chamber further includes one or more coils disposed outside the processing volume at a vertical location between the substrate support and the showerhead. The one or more coils are electrically coupled to one or more inductive RF power sources.
Abstract:
Apparatus and methods for gas distribution assemblies are provided. In one aspect, a gas distribution assembly is provided comprising an annular body comprising an annular ring having an inner annular wall, an outer wall, an upper surface, and a bottom surface, an upper recess formed into the upper surface, and a seat formed into the inner annular wall, an upper plate positioned in the upper recess, comprising a disk-shaped body having a plurality of first apertures formed therethrough, and a bottom plate positioned on the seat, comprising a disk-shaped body having a plurality of second apertures formed therethrough which align with the first apertures, and a plurality of third apertures formed between the second apertures and through the bottom plate, the bottom plate sealingly coupled to the upper plate to fluidly isolate the plurality of first and second apertures from the plurality of third apertures.