摘要:
The objective of the invention is to provide a method of fabricating semiconductor device using a laser crystallization method capable of preventing a grain boundary from being formed on the channel-forming region of a TFT and preventing the mobility of the TFT from extremely deteriorating, on-current from decreasing, or off-current from increasing due to a grain boundary and a semiconductor device fabricated by the fabrication method. Striped (banded) or rectangular concave and convex portions are formed. Then, a semiconductor film formed on an insulating film is irradiated with a laser beam diagonally to the longitudinal direction of concave and convex portions on the insulating film.
摘要:
To suppress an effect of metal contamination caused in manufacturing an SOI substrate. After forming a damaged region by irradiating a semiconductor substrate with hydrogen ions, the semiconductor substrate is bonded to a base substrate. Heat treatment is performed to cleave the semiconductor substrate; thus an SOI substrate is manufactured. Even if metal ions enter the semiconductor substrate together with the hydrogen ions in the step of hydrogen ion irradiation, the effect of metal contamination can be suppressed by the gettering process. Accordingly, the irradiation with hydrogen ions can be performed positively by an ion doping method.
摘要:
An impurity of one conductivity type is ionized and accelerated by electric field before being implanted into a semiconductor layer to form a high concentration impurity region near its surface. Then the semiconductor layer is irradiated with continuous wave laser light for melting and crystallization or recrystallization, through which a region where the concentration of the impurity is constant is formed in the semiconductor layer. The continuous wave laser light irradiation may bring the semiconductor layer to the crystalline phase from the amorphous phase as long as the impurity element is re-distributed. The impurity is segregated through this process to newly create a high concentration region. However, this region is removed and no problem arises.
摘要:
An impurity of one conductivity type is ionized and accelerated by electric field before being implanted into a semiconductor layer to form a high concentration impurity region near its surface. Then the semiconductor layer is irradiated with continuous wave laser light for melting and crystallization or recrystallization, through which a region where the concentration of the impurity is constant is formed in the semiconductor layer. The continuous wave laser light irradiation may bring the semiconductor layer to the crystalline phase from the amorphous phase as long as the impurity element is re-distributed. The impurity is segregated through this process to newly create a high concentration region. However, this region is removed and no problem arises.
摘要:
It is an object to provide a laser apparatus, a laser irradiating method and a manufacturing method of a semiconductor device that can perform uniform a process with a laser beam to an object uniformly. The present invention provides a laser apparatus comprising an optical system for sampling a part of a laser beam emitted from an oscillator, a sensor for generating an electric signal including fluctuation in energy of the laser beam as a data from the part of the laser beam, a means for performing signal processing to the electrical signal to grasp a state of the fluctuation in energy of the laser beam, and controlling a relative speed of an beam spot of the laser beam to an object in order to change in phase with the fluctuation in energy of the laser beam.
摘要:
The objective of the invention is to provide a method of fabricating semiconductor device using a laser crystallization method capable of preventing a grain boundary from being formed on the channel-forming region of a TFT and preventing the mobility of the TFT from extremely deteriorating, on-current from decreasing, or off-current from increasing due to a grain boundary and a semiconductor device fabricated by the fabrication method. Striped (banded) or rectangular concave and convex portions are formed. Then, a semiconductor film formed on an insulating film is irradiated with a laser beam diagonally to the longitudinal direction of concave and convex portions on the insulating film.
摘要:
It is an object to provide a laser apparatus, a laser irradiating method and a manufacturing method of a semiconductor device that can perform uniform a process with a laser beam to an object uniformly. The present invention provides a laser apparatus comprising an optical system for sampling a part of a laser beam emitted from an oscillator, a sensor for generating an electric signal including fluctuation in energy of the laser beam as a data from the part of the laser beam, a means for performing signal processing to the electrical signal to grasp a state of the fluctuation in energy of the laser beam, and controlling a relative speed of an beam spot of the laser beam to an object in order to change in phase with the fluctuation in energy of the laser beam.
摘要:
An objective is to provide a method of manufacturing a semiconductor device, and a semiconductor device manufactured by using the manufacturing method, in which a laser crystallization method is used that is capable of preventing the formation of grain boundaries in TFT channel formation regions, and is capable of preventing conspicuous drops in TFT mobility, reduction in the ON current, and increases in the OFF current, all due to grain boundaries. Depressions and projections with stripe shape or rectangular shape are formed. Continuous wave laser light is then irradiated to a semiconductor film formed on an insulating film along the depressions and projections with stripe shape of the insulating film, or along a longitudinal axis direction or a transverse axis direction of the rectangular shape. Note that although it is most preferable to use continuous wave laser light at this point, pulse wave laser light may also be used.
摘要:
A semiconductor device production system using a laser crystallization method is provided which can avoid forming grain boundaries in a channel formation region of a TFT, thereby preventing grain boundaries from lowering the mobility of the TFT greatly, from lowering ON current, and from increasing OFF current. Rectangular or stripe pattern depression and projection portions are formed on an insulating film. A semiconductor film is formed on the insulating film. The semiconductor film is irradiated with continuous wave laser light by running the laser light along the stripe pattern depression and projection portions of the insulating film or along the major or minor axis direction of the rectangle. Although continuous wave laser light is most preferred among laser light, it is also possible to use pulse oscillation laser light in irradiating the semiconductor film.
摘要:
To provide a semiconductor device composed of a semiconductor element or a group of semiconductor elements, in which a crystalline semiconductor film having as few grain boundaries as possible in a channel formation region is formed on an insulating surface, which can operate at high speed, which have high current drive performance, and which are less fluctuated between elements. The method of the present invention includes: forming an insulating film with an opening on a substrate having an insulating surface; forming on the insulating film and over the opening an amorphous semiconductor film or a polycrystalline semiconductor film that has randomly-formed grain boundaries; forming a crystalline semiconductor film by melting the semiconductor film, pouring the melted semiconductor into the opening of the insulating film, and crystallizing or re-crystallizing the semiconductor film; and removing the crystalline semiconductor film except a portion of the crystalline semiconductor film that is in the opening to form a gate insulating film, which is in contact with the top face of the crystalline semiconductor film, and a gate electrode.