摘要:
The Present invention provides an organic EL display and a lighting device having high efficiency. The organic EL display comprises a substrate, a pixel-driving circuit unit, and pixels arranged in the form of a matrix on the substrate. The pixel comprises a light-emitting part, and the light-emitting part is composed of a first electrode placed near to the substrate, a second electrode placed far from the substrate, and at least one organic layer placed between the first and second electrodes. The second electrode has a metal electrode layer having a thickness of 10 nm to 200 nm, and the metal electrode layer comprises a metal part and plural openings penetrating through the layer. The metal part is seamless and formed of metal continuously connected without breaks between any points therein. The openings have an average opening diameter of 10 nm to 780 nm, and are arranged so periodically that the distribution of the arrangement is represented by a radial distribution function curve having a half-width of 5 nm to 300 nm.
摘要:
A semiconductor light-emitting device capable of keeping high luminance intensity even if electric power increases, and suitable for lighting instruments such as lights and lamps. The semiconductor device includes a metal electrode layer provided with openings, and is so large in size that the electrode layer has, for example, an area of 1 mm2 or more. The openings have a mean diameter of 10 nm to 2 μm, and penetrate through the metal electrode layer. The metal electrode layer can be produced by use of self-assembling of block copolymer or by nano-imprinting techniques.
摘要:
According to one embodiment, a semiconductor light emitting device includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type and a light emitting layer provided between the first semiconductor layer and the second semiconductor layer. The device also includes a first electrode layer having electrical continuity with the first semiconductor layer and a second electrode layer provided on the second semiconductor layer, the second electrode layer including a metal portion having a thickness not less than 10 nanometers and not more than 100 nanometers along a direction from the first semiconductor layer to the second semiconductor layer. A plurality of apertures penetrates the metal portion along the direction, each of the apertures viewed along the direction having equivalent circle diameters of not less than 10 nanometers and not more than 5 micrometers, and a Schottky barrier is provided between the second semiconductor layer and the metal portion.
摘要:
According to one embodiment, a semiconductor light emitting device includes a light emitter, a first and a second electrode layer, a pad electrode and an auxiliary electrode portion. The emitter includes a first semiconductor layer provided on one side of the emitter, a second semiconductor layer provided on one other side of the emitter, and a light emitting layer provided between the first and second semiconductor layers. The first electrode layer is provided on opposite side of the second semiconductor layer from the first semiconductor layer and includes a metal layer and a plurality of apertures penetrating through the metal layer. The second electrode layer is electrically continuous with the first semiconductor layer. The pad electrode is electrically continuous with the first electrode layer. The auxiliary electrode portion is electrically continuous with the first electrode layer and extends in a second direction orthogonal to the first direction.
摘要:
A semiconductor light emitting device includes a structural body, a first electrode layer, and a second electrode layer. The structural body includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type, and a light emitting layer between the first semiconductor layer and the second semiconductor layer. The first electrode layer includes a metal portion, a plurality of first opening portions, and at least one second opening portion. The metal portion has a thickness of not less than 10 nanometers and not more than 200 nanometers along a direction from the first semiconductor layer toward the second semiconductor layer. The plurality of first opening portions each have a circle equivalent diameter of not less than 10 nanometers and not more than 1 micrometer. The at least one second opening portion has a circle equivalent diameter of more than 1 micrometer and not more than 30 micrometers.
摘要:
A semiconductor light-emitting device according to the embodiment includes a substrate, a compound semiconductor layer, a metal electrode layer provided with particular openings, a light-extraction layer, and a counter electrode. The light-extraction layer has a thickness of 20 to 120 nm and covers at least partly the metal part of the metal electrode layer; or otherwise the light-extraction layer has a rugged structure and covers at least partly the metal part of the metal electrode layer. The rugged structure has projections so arranged that their summits are positioned at intervals of 100 to 600 nm, and the heights of the summits from the surface of the metal electrode layer are 200 to 700 nm.
摘要:
In a semiconductor light emitting device, a semiconductor light emitting element has a light extracted surface on which a plurality of convex structures is formed. The convex structures each have a conical mesa portion constituting a refractive index gradient structure, a cylindrical portion constituting a diffraction grating structure, and a conical portion constituting a refractive index gradient structure. The mesa portion, cylindrical portion, and conical portion are arranged in this order from the light extracted surface. The period between the convex structures is longer than 1/(the refractive index of an external medium+the refractive index of the convex structures) of an emission wavelength and equal to or shorter than the emission wavelength. The circle-equivalent average diameter of the cylindrical portion is ⅓ to 9/10 of that of the bottom of the mesa portion.
摘要:
Disclosed is an acid etching resistance material comprising a compound having a repeating unit represented by the following general formula (1): (in the general formula (1), R1 is a hydrogen atom or methyl group; R3 is a cyclic group selected from an alicyclic group and an aromatic group; R4 is a polar group; R2 is a group represented by the following general formula (2); and j is 0 or 1): (in the general formula (2), R5 is a hydrogen atom or methyl group).
摘要翻译:公开了一种耐酸腐蚀性材料,其包含具有由以下通式(1)表示的重复单元的化合物:(在通式(1)中,R 1是氢原子或甲基; R 3是选自脂环族基团和芳族基团的环状基团; R 4是极性基团; R 2是代表的基团 由通式(2)表示,j为0或1):(通式(2)中,R 5为氢原子或甲基)。
摘要:
One aspect of the present invention provides a semiconductor light-emitting device improved in luminance, and also provides a process for production thereof. The process comprises a procedure of forming a relief structure on the light-extraction surface of the device by use of a self-assembled film. In that procedure, the light-extraction surface is partly covered with a protective film so as to protect an area for an electrode to be formed therein. The electrode is then finally formed there after the procedure. The process thus reduces the area incapable, due to thickness of the electrode, of being provided with the relief structure. Between the electrode and the light-extraction surface, a contact layer is formed so as to establish ohmic contact between them.
摘要:
One aspect of the present invention provides a semiconductor light-emitting device improved in luminance, and also provides a process for production thereof. The process comprises a procedure of forming a relief structure on the light-extraction surface of the device by use of a self-assembled film. In that procedure, the light-extraction surface is partly covered with a protective film so as to protect an area for an electrode to be formed therein. The electrode is then finally formed there after the procedure. The process thus reduces the area incapable, due to thickness of the electrode, of being provided with the relief structure. Between the electrode and the light-extraction surface, a contact layer is formed so as to establish ohmic contact between them.