Abstract:
A thin layer of ionic crystal is grown on a substrate. The crystal could be any type of ionic crystal, such as sodium chloride or potassium chloride. The crystal is a pure form of the chosen compound and may contain contaminants which would shift the wavelength of created color centers. On top of the first crystal layer, a second thin layer of a different type of crystal is deposited, such as lithium fluoride or sodium fluoride. When these two layers are radiated with gamma rays, they will each form color centers at the spots radiated. Because of the difference in crystalline properties of the two different ionic crystal centers, their color centers would be at different wavelengths. Each of the two separate ionic crystals will emit light at different characteristic wavelengths when illuminated at their unique absorption frequencies. Each layer can be made to lase separately. The top layer has an absorption energy greater than that of the bottom layer, so that the layer energy of the bottom layer absorption peak will pass through the top layer and be absorbed only by the bottom layer. There are many ways of forming F-centers in the two superimposed layers, such as by the use of selective gamma radiation by heating of an anion layer of the particular compound and then depositing the second ionic crystal on the first ionic crystal and then depositing an anion layer on the second crystal and then heating to produce a structure which will lase it to the different frequencies.
Abstract:
An oil filled pressure transducer of the type employing a metal diaphragm has a diaphragm of a greater thickness than a conventional diaphragm. The thick diaphragm exhibits and accommodates extremely large pressures and deflects to cause a lower pressure to be transmitted to the oil. Because of the large thickness of the metal diaphragm, the diaphragm dissipates a predetermined percentage of the applied pressure, whereas a corresponding fraction of the applied pressure is transmitted to the oil and hence to the silicon sensors. In this manner the diaphragm acts as a step-down transformer where a portion of the force or pressure applied to the diaphragm is transmitted to the pressure sensor. The pressure sensor receives a pressure which is a fraction of the applied pressure and the sensor is compensated to produce an output proportional to the actual pressure as applied to the thick diaphragm.
Abstract:
A force transducer assembly for measuring compressive and tensile loads applied to a force transmission device, the assembly includes a housing, a sleeve assembly and a sensor device. The housing has a hollow interior. The sleeve assembly is coupled within the interior of the housing. The sensor device is secured within the interior of the housing between a portion of the sleeve assembly and a portion of the housing. The sensor device includes first and second sensors each including an isolation diaphragm at least partially defining an oil-filled cavity, and a piezoresistive sensor positioned so as to be effected by a change in pressure in the oil-filled cavity. When a first force is applied to the apparatus in a first direction via the force transmission device, one of the isolation diaphragms is deflectable in response thereto, and when a second force is applied in a second direction opposite to the first direction, the other of the isolation diaphragms is deflectable in response thereto. This causes a corresponding output from the sensor assembly. The first direction exerts a push on the device and the second direction exerts a pull on the device.
Abstract:
A pressure sensing device for producing an output proportional to an applied pressure irrespective of vibration and acceleration of the device, the device including: a first deflecting diaphragm formed in a first wafer and including a first plurality of piezoresistors mounted thereon, the first diaphragm being responsive to the applied pressure and vibration of the device; and, a second deflecting diaphragm formed in the first wafer and including a second plurality of piezoresistors mounted thereon, the second diaphragm being responsive only to vibration of the device; wherein, the first and second pluralities of piezoresistors are electrically coupled together to provide a common output such that they cooperatively at least partially cancel a portion of the common output associated with the vibration of the device.
Abstract:
A method for sealing a transducer of a type having a diaphragm with an active region and an inactive region, a stress sensing network associated with the active region of the diaphragm, contacts associated with the inactive region of the diaphragm, and lead-outs for coupling the stress sensing network to the contacts. The method comprises oxidizing the transducer to provide a first oxide layer which covers the diaphragm, the stress sensing network, the lead-outs and the contacts. Next, a layer of semiconductive material is deposited over the first oxide layer and is then planarized to provide a planar surface having a substantially flat and bondable surface. Finally, a cover member is bonded to the planar surface of the layer which covers the inactive region of the diaphragm to hermetically seal the stress sensing network and thereby provide a sealed transducer.
Abstract:
There is disclosed a semiconductor sensor device comprising a semiconductor diaphragm member having a top surface coated with an oxide layer; P+ sensor elements fusion bonded to the oxide layer at a relatively central area of the diaphragm; P+ finger elements fusion bonded to the oxide layer extending from the sensors to an outer contact location of the diaphragm for each finger; and an external rim of P+ material fusion bonded to the oxide layer and surrounding the sensors and fingers. A first glass wafer member is electrostatically bonded at a bottom surface to the fingers and rim to hermetically seal the sensors and fingers of the diaphragm member. The first glass wafer includes a depression above the sensors and has a plurality of apertures, where each aperture is associated with a separate finger at the contact location and each aperture being smaller than the associated finger lining up with the contact location wherein each contact location can be accessed via the associated aperture in the first glass wafer member. A second glass wafer member is sealingly coupled to a top surface of the first glass wafer and has a plurality of apertures aligned with the plurality of apertures of the first glass wafer member and containing a group of hermetically sealed pins for coupling to the contact locations.
Abstract translation:公开了一种半导体传感器装置,其包括具有涂覆有氧化物层的顶表面的半导体隔膜部件; P +传感器元件在隔膜的相对中心区域处熔合到氧化物层; P +手指元件融合到从传感器延伸到每个手指的隔膜的外部接触位置的氧化物层; 并且P +材料的外缘融合到氧化物层并且围绕传感器和手指。 第一玻璃晶片构件在底面处与手指和边缘静电结合,以气密地密封隔膜构件的传感器和手指。 第一玻璃晶片包括在传感器上方的凹陷部,并且具有多个孔,其中每个孔与接触位置处的单独手指相关联,并且每个孔小于相关联的手指与接触位置对齐,其中每个接触位置可以 通过第一玻璃晶片构件中的相关孔径进入。 第二玻璃晶片构件密封地联接到第一玻璃晶片的顶表面,并且具有与第一玻璃晶片构件的多个孔对准的多个孔,并且包含一组用于联接到接触位置的密封销。
Abstract:
Piezo-optical pressure sensitive devices employing porous semiconductor material as a stress sensitive member. The devices monitor pressure or force applied thereto by detecting a corresponding change in the amount of light absorbed by a porous layer of semiconductive material such as silicon. A pressure or stress signal is thus converted into an optical one. The sensing element of an optical switch embodiment of the device is comprised of a transparent layer of material upon which there is disposed a porous layer of semiconductive material. When unstressed, the porous layer absorbs monochromatic light of a predetermined wavelength. When the porous layer is stressed, a metallized epitaxial layer formed thereon reflects the light back through the transparent layer where it can be detected by a light detection system.
Abstract:
An electromechanical transducer is provided, and the process for making it utilizes a piezoresistive element or gage which is dielectrically isolated from a gap spanning member and substrate upon which it is supported. The gage of the invention is a force gage and is derived from a sacrificial wafer by a series of etching and bonding steps which ultimately provide a gage with substantially reduced strain energy requirements.
Abstract:
An improved gas leak detection apparatus is disclosed for detecting a leak in a gas containing vessel of constant volume which compensates for deviations in behavior of a contained gas from an ideal model. The apparatus incorporates a pressure transducer, an amplifying means and a feedback means and operates to effectively and accurately model the van der Waals equation of state for gasses. The apparatus is adaptable for operation with any number of different gases by simply changing the values of specific circuit elements. The output of the apparatus is proportional to the total number of moles of gas present in the containment vessel at any particular time, and will thus indicate a leak from the vessel upon a reduction in that number of moles, absent an intentional reduction of the mass of gas in the vessel.
Abstract:
A first semiconductor wafer having a semiconductor element such as a piezoresistive element or any integrated circuit located on a top surface thereof is bonded to a second semiconductor wafer so that the semiconductor element on the first wafer is received in a cavity sealed from the outside environment. The bottom surface of the second water is prepared by etching it about a mask pattern so that the pattern projects from the bottom surface, thereby forming the cavity and defining projecting surfaces which are bonded to corresponding projecting areas on the first wafer to create a hermetic seal therebetween. The second wafer is electrochemically etched to produce porous silicon with regions of non-porous monocrystalline silicon extending between the top and bottom surfaces. The porous areas are thermally oxidized to convert them to silicon dioxide while the non-porous regions bonded to bond pads of the resistive pattern on the first wafer act as extended contacts.