Abstract:
An extreme ultraviolet mask and method of manufacture thereof includes: providing a glass-ceramic block; forming a glass-ceramic substrate from the glass-ceramic block; and depositing a planarization layer on the glass-ceramic substrate.
Abstract:
An apparatus and method of manufacture of an extreme ultraviolet reflective element includes: a substrate; a multilayer stack on the substrate, the multilayer stack includes a plurality of reflective layer pairs having a first reflective layer formed from silicon and a second reflective layer formed from niobium or niobium carbide for forming a Bragg reflector; and a capping layer on and over the multilayer stack for protecting the multilayer stack by reducing oxidation and mechanical erosion.
Abstract:
An extreme ultraviolet reflective element and method of manufacture includes a substrate; a multilayer stack on the substrate, the multilayer stack includes a plurality of reflective layer pairs having a first reflective layer formed from silicon and a second reflective layer having a preventative layer separating a lower amorphous layer and an upper amorphous layer; and a capping layer on and over the multilayer stack for protecting the multilayer stack by reducing oxidation and mechanical erosion.
Abstract:
Embodiments described herein provide methods and apparatus for forming graphitic carbon such as graphene on a substrate. The method includes providing a precursor comprising a linear conjugated hydrocarbon, depositing a hydrocarbon layer from the precursor on the substrate, and forming graphene from the hydrocarbon layer by applying energy to the substrate. The precursor may include template molecules such as polynuclear aromatics, and may be deposited on the substrate by spinning on, by spraying, by flowing, by dipping, or by condensing. The energy may be applied as radiant energy, thermal energy, or plasma energy.