摘要:
Techniques, apparatuses, and systems for using identification sequences in a wireless communication system can include receiving information indicative of a pilot code detected by a wireless device, the pilot code being shared by multiple Femto Access Points (FAPs) that each provide wireless service in at least a portion of the coverage area; receiving information indicative of an identification sequence detected by the wireless device that is associated with the pilot code, using the information indicative of the identification sequence to identify one of the FAPs that share the pilot code; and performing a hand-off of the call to the identified FAP to continue to provide wireless service for the call via the identified FAP.
摘要:
A method for dynamic adjustment of downlink/uplink resource allocation ratio in a long-term evolution (LTE) time division duplex (TDD) system is disclosed. The method includes replacing at least one of an uplink subframe and a downlink subframe with a mute subframe in a subframe pattern, indicating a first downlink/uplink resource allocation ratio. Thereafter, the mute subframe is replaced with either the uplink subframe or the downlink subframe to form another subframe pattern. The subframe pattern including the mute subframe is obtained from a lookup table, such that the replacing the mute subframe results in the other pattern. A data transmission in accordance with the other subframe pattern, indicating a second downlink/uplink resource allocation ratio, may be scheduled. Hybrid Automatic Repeat-request (HARQ) processing may be implemented after the at least one of the uplink subframe and the downlink subframe is replaced with the mute subframe in the first subframe pattern.
摘要:
Techniques, apparatuses, and systems for handling femto-cell hand-in requests can include operating a macro-cell base station to provide wireless service to wireless devices in a geographical coverage area; receiving, from a wireless device, a message indicative of the wireless device's reception of a base station radio signal, the message including a base station identifier; controlling multiple femto-cell base stations that are assigned to the base station identifier to communicate with the wireless device and to report a reception of a radio signal from the wireless device; and transferring the wireless device from the macro-cell base station to a femto-cell base station of the multiple femto-cell base stations that reports a reception of the radio signal from the wireless device. The multiple femto-cell base stations can provide wireless service in different nonadjacent portions of the geographical coverage area.
摘要:
Techniques, apparatuses, and systems for dynamically changing downlink and uplink allocations can include operating a base station under time division duplexing to communicate with one or more mobile devices using a frame structure, adjusting a downlink-uplink ratio to change an allocation between uplink and downlink data capacities in the frame structure, determining a mute interval based on the adjusted downlink-uplink ratio, generating mute information based on the mute interval to identify the one or more areas of the frame structure effected by the allocation change, and transmitting the mute information to the one or more mobile devices.
摘要:
Techniques and devices for encoding and decoding a signal channel in a downlink signal in wireless communication systems, including the frame control header (FCH) data in IEEE 802.16 systems with reduced transmission power consumption, improved error correction capability, and reduced decoding complexity.
摘要:
A retransmission method for a time division duplexing self-adaptive frame structure, and a network side device relate to a technology of dynamically allocating uplink and downlink sub-frames in an LTE-advance (3GPP Release11) TDD communication system. The method comprises: during transmission of a TDD self-adaptive frame, for an uplink sub-frame, if a frame structure, of which an RTT period of PHICH and PUSCH of the uplink sub-frame is 10 ms, corresponding to the uplink sub frame is found in 7 types of defined frame structures, then sending PHICH data on a corresponding downlink sub-frame in the found frame structure, and sending retransmission data on the corresponding uplink sub-frame in the found frame structure. The solution ensures HARQ compatibility of an uplink data channel of R10UE. In addition, A/N feedback of the PDSCH is configured according to the uplink A/N resolution, thereby improving retransmission performance.
摘要:
Systems and methods for the configuration of channel state information reference signals (CSI-RS) are disclosed. The systems and methods include providing user equipment with the locations of CSI-RS reuse information. Several encoding patterns and exemplary methodology for both the identification of the CSI-RS resource element locations are provided in exemplary embodiments. In addition, exemplary embodiments provide muting methods and systems for a physical downlink shared channel resource elements.
摘要:
Disclosed herein are methods and apparatus for network energy savings in a wireless communication system, such as the 3GPP LTE system. Particularly, one such method reduces power consumption in a base station by selectively muting or disabling downlink transmissions of certain control signal symbols in one or more subframes or frames. The disclosed methods and apparatus can apply independently or in combination in both FDD and TDD systems.
摘要:
Techniques, apparatuses, and systems for dynamically changing downlink and uplink allocations can include operating a base station under time division duplexing to communicate with one or more mobile devices using a frame structure, adjusting a downlink-uplink ratio to change an allocation between uplink and downlink data capacities in the frame structure, determining a mute interval based on the adjusted downlink-uplink ratio, generating mute information based on the mute interval to identify the one or more areas of the frame structure effected by the allocation change, and transmitting the mute information to the one or more mobile devices.
摘要:
A vertical turning-milling complex machining center comprises a horizontally-arranged bed body (6) and a vertically-arranged column (7). The bed body (6) is provided with an X-axis lateral supporting linear track (2) and an X-axis guide screw (5). The bed body (6) is also provided with a uniaxial rotating table (1) which can reciprocate and is driven directly by a first external rotor torque motor. The column (7) is vertically provided with a Z-axis lateral supporting linear track (10), a Z-axis guide screw (9) and a crossbeam (11) that reciprocates up and down. The crossbeam (11) is provided with a transverse Y-axis linear track (13), a Y-axis guide screw (12) and a single-pendulum milling head seat frame that can reciprocate along the Y-axis guide screw (12). The single-pendulum milling head is driven directly by a second external rotor torque motor. The vertical turning-milling complex machining center uses direct-drive technology applied to a B-axis and a C-axis, the motor torque is greatly increased and functional parts can stably operate, therefore the integral rigidity and stability of the machining center are improved.