摘要:
A unique monitoring system and method is provided that involves monitoring user activity in order to facilitate managing and optimizing the utilization of various system resources. In particular, the system can monitor user activity, detect when users need assistance with their specific activities, and identify at least one other user that can assist them. Assistance can be in the form of answering questions, providing guidance to the user as the user completes the activity, or completing the activity such as in the case of taking on an assigned activity. In addition, the system can aggregate activity data across users and/or devices. As a result, problems with activity templates or activities themselves can be more readily identified, user performance can be readily compared, and users can communicate and exchange information regarding similar activity experiences. Furthermore, synchronicity and time-sensitive scheduling of activities between users can be facilitated and improved overall.
摘要:
A system that can identify, create, update and/or process a workflow based upon a current, past or future activity is disclosed. A ‘workflow’ can be defined as an activity flow that includes interaction with, or assignment of work to, people, devices, or services by a single individual or a group of individuals. Once a workflow is determined in accordance with the innovation, the system can inform other users or groups that are performing, or intend to perform, a similar or like activity. In establishing the workflow, the innovation can operate in an ad hoc or authored manner. As well, the system can employ a combination of either ad hoc or authored mechanisms in establishment of the workflow.
摘要:
A unique system and method is provided that facilitates managing an activity centric environment via a master profile (which includes user, group, and device profiles). The master profile follows or stays with the user and can be applied universally across devices and activities (activity templates). When profile data does not currently exist (e.g., a new activity or a new device), portions of the existing profile data can be applied to such new activities or device as appropriate. Thus, current profile data for existing or known user interactions and devices can be inferentially extended to new user interactions and devices. When conflicts arise between applicable profile data, they can be solved by applying the profile data in accordance with their priority. User intervention can be requested whereby the system can adapt previous user-based resolutions to future conflicts. Profile data can also be scaled according to the context of the user-device-activity interaction.
摘要:
Systems and methods are described relating to detecting an indication of a person within a specified proximity to at least one mobile device; and presenting an indication of location of the at least one mobile device at least partially based on the indication of the person within the specified proximity. Additionally, systems and methods are described relating to means for detecting an indication of a person within a specified proximity to at least one mobile device; and means for presenting an indication of location of the at least one mobile device at least partially based on the indication of the person within the specified proximity.
摘要:
Techniques for ability enhancement are described. Some embodiments provide an ability enhancement facilitator system (“AEFS”) configured to enhance a user's ability to operate or function in a transportation-related context as a pedestrian or a vehicle operator. In one embodiment, the AEFS is configured to perform vehicular threat detection based on information received at a road-based device, such as a sensor or processor that is deployed at the side of a road. An example AEFS receives, at a road-based device, information about a first vehicle that is proximate to the road-based device. The AEFS analyzes the received information to determine threat information, such as that the vehicle may collide with the user. The AEFS then informs the user of the determined threat information, such as by transmitting a warning to a wearable device configured to present the warning to the user.
摘要:
Techniques for ability enhancement are described. Some embodiments provide an ability enhancement facilitator system (“AEFS”) configured to enhance voice conferencing among multiple speakers. Some embodiments of the AEFS enhance voice conferencing by recording, translating and presenting voice conference history information based on speaker-related information, wherein the translation is based on language identification using multiple speech recognizers and GPS information. The AEFS receives data that represents utterances of multiple speakers who are engaging in a voice conference with one another. The AEFS then determines speaker-related information, such as by identifying a current speaker, locating an information item (e.g., an email message, document) associated with the speaker, or the like. The AEFS records conference history information (e.g., a transcript) based on the determined speaker-related information. The AEFS then informs a user of the conference history information, such as by presenting a transcript of the voice conference and/or related information items on a display of a conferencing device associated with the user.
摘要:
Techniques for ability enhancement are described. Some embodiments provide an ability enhancement facilitator system (“AEFS”) configured to enhance a user's ability to operate or function in a transportation-related context as a pedestrian or a vehicle operator. In one embodiment, the AEFS is configured perform vehicular threat detection based at least in part on analyzing audio signals. An example AEFS receives data that represents an audio signal emitted by a vehicle. The AEFS analyzes the audio signal to determine vehicular threat information, such as that the vehicle may collide with the user. The AEFS then informs the user of the determined vehicular threat information, such as by transmitting a warning to a wearable device configured to present the warning to the user.
摘要:
Systems and methods are described relating to accepting an indication of an inertial impact associated with at least one mobile device; and presenting an indication of location of the at least one mobile device at least partially based on accepting the indication of the inertial impact associated with the at least one mobile device. Additionally, systems and methods are described relating to means for accepting an indication of an inertial impact associated with at least one mobile device; and means for presenting an indication of location of the at least one mobile device at least partially based on accepting the indication of the inertial impact associated with the at least one mobile device.
摘要:
A human input system is described herein that provides an interaction modality that utilizes the human body as an antenna to receive electromagnetic noise that exists in various environments. By observing the properties of the noise picked up by the body, the system can infer human input on and around existing surfaces and objects. Home power lines have been shown to be a relatively good transmitting antenna that creates a particularly noisy environment. The human input system leverages the body as a receiving antenna and electromagnetic noise modulation for gestural interaction. It is possible to robustly recognize touched locations on an uninstrumented home wall using no specialized sensors. The receiving device for which the human body is the antenna can be built into common, widely available electronics, such as mobile phones or other devices the user is likely to commonly carry.
摘要:
Skinnable touch device grip pattern techniques are described herein. A touch-aware skin may be configured to substantially cover the outer surfaces of a computing device. The touch-aware skin may include a plurality of skin sensors configured to detect interaction with the skin at defined locations. The computing device may include one or more modules operable to obtain input from the plurality of skin sensors and decode the input to determine grips patterns that indicate how the computing device is being held by a user. Various functionality provided by the computing device may be selectively enabled and/or adapted based on a determined grip pattern such that the provided functionality may change to match the grip pattern.