摘要:
A method includes depositing a dummy fill material over exposed portions of a substrate and a gate stack disposed on the substrate, removing portions of the dummy fill material to expose portions of the substrate, forming a layer of spacer material over the exposed portions of the substrate, the dummy fill material and the gate stack, removing portions of the layer of spacer material to expose portions of the substrate and the dummy fill material, depositing a dielectric layer over the exposed portions of the spacer material, the substrate, and the gate stack, removing portions of the dielectric layer to expose portions of the spacer material, removing exposed portions of the spacer material to expose portions of the substrate and define at least one cavity in the dielectric layer, and depositing a conductive material in the at least one cavity.
摘要:
Gate structures with different gate lengths and methods of manufacture are disclosed. The method includes forming a first gate structure with a first critical dimension, using a pattern of a mask. The method further includes forming a second gate structure with a second critical dimension, different than the first critical dimension of the first gate structure, using the pattern of the mask.
摘要:
A method includes depositing a dummy fill material over exposed portions of a substrate and a gate stack disposed on the substrate, removing portions of the dummy fill material to expose portions of the substrate, forming a layer of spacer material over the exposed portions of the substrate, the dummy fill material and the gate stack, removing portions of the layer of spacer material to expose portions of the substrate and the dummy fill material, depositing a dielectric layer over the exposed portions of the spacer material, the substrate, and the gate stack, removing portions of the dielectric layer to expose portions of the spacer material, removing exposed portions of the spacer material to expose portions of the substrate and define at least one cavity in the dielectric layer, and depositing a conductive material in the at least one cavity.
摘要:
At least one mask layer formed over a substrate includes at least one of a dielectric material and a metallic material. By forming a first pattern in one of the at least one mask layer, a patterned mask layer including said first pattern is formed. An overlying structure including a second pattern that includes at least one blocking area is formed over said patterned mask layer. Portions of said patterned mask layer that do not underlie said blocking area are removed. The remaining portions of the patterned mask layer include a composite pattern that is an intersection of the first pattern and the second pattern. The patterned mask layer includes a dielectric material or a metallic material, and thus, enables high fidelity pattern transfer into an underlying material layer.
摘要:
A method of forming a hard mask in a semiconductor device which is self-aligned with a MTJ formed in the device is provided. The method includes the steps of: forming a hard mask material layer on an upper surface of a magnetic stack in the MTJ; forming an anti-reflective coating (ARC) layer on at least a portion of an upper surface of the hard mask material layer, the ARC layer being selected to be removable by a wet etch; forming a photoresist layer on at least a portion of an upper surface of the ARC layer; removing at least a portion of the photoresist layer and the ARC layer to thereby expose at least a portion of the hard mask material layer; etching the hard mask material layer to remove the exposed portion of the hard mask material layer; and performing a wet strip to remove remaining portions of the ARC layer and photoresist layer in a same processing step without interference to the magnetic stack.
摘要:
A magnetic memory cell having a self-aligned hard mask for contact to a magnetic tunnel junction is provided. For example, a magnetic memory cell includes a magnetic storage element formed on a semiconductor substrate, and a hard mask that is self-aligned with the magnetic storage element. The hard mask includes a hard mask material layer formed on an upper surface of a magnetic stack in the magnetic storage element, an anti-reflective coating (ARC) layer formed on at least a portion of an upper surface of the hard mask material layer, wherein the ARC layer is selected to be removable by a wet etch, and a photoresist layer formed on at least a portion of an upper surface of the ARC layer. The selected portions of the ARC layer and photoresist layer are removed in a same processing step with wet etch techniques without interference to the magnetic stack.
摘要:
A method of fabricating a semiconductor device that includes at least two fin structures, wherein one of the at least two fin structures include epitaxially formed in-situ doped second source and drain regions having a facetted exterior sidewall that are present on the sidewalls of the fin structure. In another embodiment, the disclosure also provides a method of fabricating a finFET that includes forming a recess in a sidewall of a fin structure, and epitaxially forming an extension dopant region in the recess that is formed in the fin structure. Structures formed by the aforementioned methods are also described.
摘要:
Techniques for shielding magnetic memory cells from magnetic fields are presented. In accordance with aspects of the invention, a magnetic storage element is formed with at least one conductive segment electrically coupled to the magnetic storage element. At least a portion of the conductive segment is surrounded with a magnetic liner. The magnetic liner is operative to divert at least a portion of a magnetic field created by a current passing through the conductive segment away from the magnetic storage element.
摘要:
Techniques for magnetic device fabrication are provided. In one aspect, a method of patterning at least one, e.g., nonvolatile, material comprises the following steps. A hard mask structure is formed on at least one surface of the material to be patterned. The hard mask structure is configured to have a base, proximate to the material, and a top opposite the base. The base has one or more lateral dimensions that are greater than one or more lateral dimensions of the top of the hard mask structure, such that at least one portion of the base extends out laterally a substantial distance beyond the top. The top of the hard mask structure is at a greater vertical distance from the material being etched than the base. The material is etched.
摘要:
A method for implementing alignment of a semiconductor device structure includes forming first and second sets of alignment marks within a lower level of the structure, the second set of alignment marks adjacent the first set of alignment marks. An opaque layer is formed over the lower level, including the first and second sets of alignment marks. A portion of the opaque layer corresponding to the location of said first set of alignment marks is opened so as to render the first set optically visible while the second set of alignment marks initially remains covered by the opaque layer. The opaque layer is patterned using the optically visible first set of alignment marks, wherein the second set of alignment marks remain available for subsequent alignment operations in the event the first set becomes damaged during patterning of the opaque layer.