Abstract:
Apparatus, systems, and methods for reducing resonance in a multiple inverter system are provided. One apparatus includes an inverter coupled to a decoupling element, wherein the inverter and the decoupling elements are couplable to a power source. A system includes a motor vehicle power source including first positive and negative terminals, and a plurality of inverters coupled to the power source. Each inverter includes a second positive terminal coupled to the first positive terminal and a second negative terminal coupled to the first negative terminal. A first inverter of the plurality of inverters includes a decoupling element coupled between the first positive terminal and the positive terminal of the first inverter. One method includes operating first and second inverters at different frequencies, and controlling the impedance of a decoupling element coupled between a power source and the first inverter based on the second inverter frequency.
Abstract:
Temperature of an electric drive is regulated to prevent undesirable thermal effects. Temperature conditions of the electric drive system are monitored and torque of the electric drive system is limited based on the temperature conditions.
Abstract:
Methods and apparatus are provided for protecting a motor control circuit in a permanent magnet electric motor system. The permanent magnet electric motor system includes a permanent magnet electric motor having a predetermined number of windings corresponding to the phases of the permanent magnet electric motor and a direct current (DC) bus coupled to a power source for providing operational power for the electric motor system. A motor control circuit is connected to the DC bus for receiving the operational power therefrom and is connected to the windings of the permanent magnet electric motor for controlling the permanent magnet electric motor. A protection circuit is connected to the DC bus for receiving the voltage therefrom for operation of the protection circuit and for detecting predetermined motor control circuit fault conditions from voltage sensed on the DC bus and in response thereto providing protection for the motor control circuit.
Abstract:
Methods and apparatus are provided for reducing voltage distortion effects at low speed operation in electric drives. The method comprises receiving a first signal having a duty cycle with a range between minimum and maximum achievable duty cycles, producing a second duty cycle based on the minimum achievable duty cycle if the duty cycle is within a distortion range and less than a first clipping value, producing a second duty cycle based on the closer of minimum and maximum pulse widths if the duty cycle is within the distortion range and between the first and a second clipping value, producing a second duty cycle based on the maximum achievable duty cycle if the duty cycle is within the distortion range and greater than the second clipping value, and transmitting a second signal to the voltage source inverter having the second duty cycle.
Abstract:
In an embodiment of a method, the method includes measuring currents and voltages that are coupled to a motor that includes an internal permanent magnet and determining a reactive power in response to the measured currents and voltages. The method further includes estimating a first flux orthogonal to an axis of the internal permanent motor and estimating a second flux aligned with the axis of the internal permanent motor. Additionally, the method includes estimating a torque in response to the measured currents and the first and second fluxes.
Abstract:
A method for operating an electric motor is provided. The method includes receiving a torque request; determining long term torque capabilities and short term torque capabilities of the electric motor; generating a torque command based on the torque request and at least one of the long term torque capabilities or the short term torque capabilities; and controlling the electric motor in accordance with the torque command.
Abstract:
Systems and methods are provided for monitoring current in an electric motor. An electrical system includes a (DC) interface, an electric motor, an inverter module coupled between the DC interface and the electric motor, a first current sensor between a first phase leg of the inverter module and a first phase of the electric motor to measure a first current flowing through the first phase of the electric motor, a second current sensor between the first phase leg and the DC interface to measure a second current flowing through the first phase leg, and a control module coupled to the first current sensor and the second current sensor. The control module is configured to initiate remedial action based at least in part on a difference between the first current measured by the first current sensor and the second current measured by the second current sensor.
Abstract:
Systems and methods are provided for monitoring current in an electric motor. An electrical system comprises a direct current (DC) interface, an electric motor, and an inverter module between the DC interface and the electric motor. A first current sensor is configured to measure a DC current flowing between the DC interface and the inverter module. A second current sensor is configured to measure a first phase current flowing through the first phase of the electric motor. A control module is coupled to the current sensors, and the control module is configured to determine an expected value for the first phase current based at least in part on the DC current measured by the first current sensor and take remedial action based on a difference between the expected value and the measured first phase current.
Abstract:
Methods, system and apparatus are provided for estimating rotor angular position and angular velocity during a position sensor fault, and for verifying the accuracy or inaccuracy of a position sensor's outputs based on the estimated rotor angular position and angular velocity of the rotor following a position sensor fault.
Abstract:
Methods and systems for driving an automobile are provided. The system includes a prime mover power source and a two-mode, compound-split, electro-mechanical transmission, including first and second motors, coupled to the prime mover power source, a power inverter coupled to the first and second motors, and a processor coupled to the first and second motors and the power inverter. The processor is configured to modify a signal controlling the power inverter utilizing a first voltage distortion compensation method if a modulation index of the signal is less than a first modulation index value and modify the signal utilizing a second voltage distortion compensation method if the modulation index is at least equal to the first modulation index value.