Abstract:
High voltage array light emitting devices and fixtures are disclosed. In one embodiment a light emitting device can include a submount, a light emission area disposed over the submount and a retention material adapted to be dispensed about the light emission area. The light emitting device can be operable at high voltages which are greater than approximately 40 volts (V). In one aspect, the retention material can be least partially disposed within the light emission area such that the retention material physically separates a first section of the light emission area from a second section of the light emission area.
Abstract:
A LED lamp includes an optically transmissive enclosure and a base connected to the enclosure. LEDs are mounted on a substrate for emitting light when energized though an electrical path from the base. The substrate and the LEDs are mounted outside of the enclosure for transmitting light from the plurality of LEDs into the enclosure.
Abstract:
Solid state lighting apparatuses and related methods are disclosed. In one aspect, a solid state lighting apparatus is provided. The apparatus includes a substrate, one or more surge protection components supported by the substrate, and at least one solid state light emitter supported by the substrate. The surge protection components are adapted to receive alternating current (AC) directly from an AC power source. The at least one solid state light emitter electrically coupled to the one or more surge protection components. An overall height of the apparatus is approximately 4.5 millimeters (mm) or less. In some aspects, an overall surface area of the one or more surge protection components is approximately 168 square millimeters (mm2) or less. Surge protection circuitry described herein offers a compact form factor, compact surface area, is thin, and meets or exceeds surge compatibility standards.
Abstract:
A LED lamp includes an optically transmissive enclosure and a base connected to the enclosure. LEDs are mounted on a substrate for emitting light when energized though an electrical path from the base. The mounting substrate for the LEDs has a surface that is exposed to the exterior of the enclosure for transmitting heat from the plurality of LEDs and dissipating heat to the ambient environment.
Abstract:
High voltage array light emitting devices and fixtures are disclosed. In one embodiment a light emitting device can include a submount, a light emission area disposed over the submount and a retention material adapted to be dispensed about the light emission area. The light emitting device can be operable at high voltages which are greater than approximately 40 volts (V). In one aspect, the retention material can be least partially disposed within the light emission area such that the retention material physically separates a first section of the light emission area from a second section of the light emission area.
Abstract:
A lamp comprises an enclosure comprising a reflector and a lens where the reflector is made of thermally conductive material. A base is coupled to the enclosure. An LED is located in the enclosure and emits light when energized through an electrical path from the base. A heat sink comprises a heat dissipating portion that may be at least partially exposed to the ambient environment and a heat conducting portion that is thermally coupled to the LED. The reflector is thermally coupled to the heat sink and is exposed to the exterior of the lamp such that heat from the heat sink may be dissipated to the ambient environment at least partially through the reflector.
Abstract:
A lamp has an optically transmissive enclosure and a base defining a longitudinal axis of the lamp extending from the base to the free end of the enclosure. A heat sink is at least partially located in the enclosure and includes a tower that extends along the longitudinal axis of the lamp. An LED assembly is positioned in the optically transmissive enclosure. The LED assembly comprises a lead frame circuit or a flex circuit where LEDs are attached to the circuits. The lead frame and flex circuit are formed into a three-dimensional shape and are thermally coupled to the tower.
Abstract:
In one embodiment, a lamp comprises an optically transmissive enclosure. An LED array is disposed in the optically transmissive enclosure operable to emit light when energized through an electrical connection. A gas is contained in the enclosure to provide thermal coupling to the LED array. The gas may include oxygen.